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1 Executive Summary

The FY22 Proxy App Suite Release milestone includes the following activities:

Curate a collection of proxy applications that represents the breadth of ECP appli-
cations, including application domains, programming models, supporting libraries, nu-
merical methods, etc. Identify gaps in coverage and work with application teams to
commission or develop proxies to cover gaps. From within this collection, designate the
"ECP Proxy Application Suite” of 10—15 proxies that balance breadth of coverage with
ease of use and quality of implementation. Also designate approximately 6-10 proxies
to form the “ECP Machine Learning Proxy Suite”. The ML suite will represent algo-
rithms, use cases, and programming methods typically used by ECP science workloads
to incorporate machine learning into their workflows.

Version 6.0 of the ECP Proxy App Suite has changed very significantly compared to Version 5.0.
Although the proxies included in the last suite were useful and have been thoroughly studied, moving
forward, we chose to curate a proxy suite that is suitable for system architectures that rely heavily
on GPUs to provide the majority of performance. GPU-based systems are becoming prevalent and
we need a proxy app suite that can support co-design and acquisition of these systems. Section 2
contains a description of the current contents of the suite.

We have also updated the ML Proxy App Suite to Version 6.0. We have not only added proxies,
but have updated some proxies to include additional capabilities. Section 4 describes these new
and updated proxies.

We have added a several new proxies to the catalog this year. We maintained this catalog of
ECP-and DOE-relevant proxy applications through this final year of the project. This catalog now
contains over 80 entries. Brief descriptions of the proxies that have been added to this collection
since our last release are provided in Section 3.

Finally, the team has continued to develop the proxy apps that were initially developed and
reported on in FY21. Many of these proxies have been updated with scientific simulation capabilities
and interfaces to enable them to run on newer GPU architectures and have been added to the suite
and/or to the catalog. These efforts are described in Section 5.

Our project website is https://proxyapps.exascaleproject.org


https://proxyapps.exascaleproject.org

2 The Proxy App Suite v6.0

The ECP Proxy App Team released version 6.0 of the ECP Proxy App Suite on November 1, 2022
(https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/) .
Release 6.0 of the ECP Proxy App Suite includes the following proxy apps:

CabanaPIC Based on the Cabana library, it does explicit PIC in Cartesian geometry solving
relativistic Vlasov-Maxwell equations.

E3SM-kernels Climate modeling kernels originating from the Energy Exascale Earth System
Model (E3SM).

ExaMiniMD Classical Molecular Dynamics from the CoPA co-design center. Features both a
simple Lennard-Jones potential and the computationally expensive SNAP potential.

ExaMPM Material point method built with the Cabana library for fluid and solid mechanics.

GAMESS_RI-MP2_MiniApp Computes a quantum chemistry method, the RI-MP2 energy, for
estimating the electron correlation error.

Goulash An interoperability proxy and test suite for heterogeneous programming models and
compilers.

HyPar Compressible flow, hyperbolic-parabolic PDE solver using WENO and CRWENO spatial
discretizations.

IAMR A parallel, adaptive mesh refinement (AMR) code that solves the variable-density incom-
pressible Navier-Stokes equations and uses the AMReX framework.

MACSio/RIOPA Generates complex I/O patterns consistent with multiphysics codes.

SNAP Discrete ordinates neutral particle transport application. Mimics the computational work-
load, memory requirements, and communication patterns of PARTISN.

Quicksilver Represents the key elements of the Mercury workload by solving a simplified dynamic
Monte Carlo particle transport problem.

As previously noted, these proxies were chosen to cover a wide scientific domain and because
their implementations are compatible with contemporary GPU architectures. Our desire was also
to include proxy apps and libraries that were developed within the ECP project. If users desire
CPU-based proxy apps, Version 4.0/5.0 is likely more suitable and remains available.


https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/

3 Additions to the ECP Proxy App Collection

We maintain a catalog of ECP-and DOE-relevant proxy applications at https://proxyapps.
exascaleproject.org/app/. This catalog now contains over 80 entries. This section contains
brief descriptions of the proxies that have been added to this collection since our last release.

3.1 SHAW

This code simulates the generation and propagation of elastic seismic shear waves in an axisym-
metric domain. The name "SHAW?” is an acronym built from "SHeAr Waves”.

Languages: C++, Kokkos, Python

Institution: Sandia National Laboratories

Repo: https://github.com/Pressio/SHAW

3.2 PGAS-FMO Proxy Application

This proxy application simulates the compute load and data-movement of the kernel of the Fragment
Molecular Orbital (FMO) method in quantum chemistry. The proxy implements a parallel global
address space (PGAS) in order to support FMO.

Languages: fortran-90+ / MPI

Institution: Argonne National Laboratory

Repo: https://github.com/gdfletcher/pgas-£fmo

3.3 FlexFlow - CandleUno

FlexFlow implementation of Candle Uno benchmarks.
Languages: C++, C, Cuda, Python

Institution: Los Alamos National Laboratory

Repo: https://github.com/flexflow/FlexFlow/tree/r22.05

3.4 HyPar

The Hyperbolic-Parabolic Partial Differential Equations Solver, is a finite-difference framework to
solve any general hyperbolic-parabolic set of partial differential equations (with source terms) on
Cartesian (structured) grids.

Languages: CUDA, DPC++, Kokkos

Institution: Argonne National Laboratory

Repo: https://bitbucket.org/deboghosh/hypar/src/master

3.5 IMEXLBM

Weakly Compressible Lattice Boltzmann solvers on structured grids.

Languages: C++, Kokkos, DPC++

Institution: Argonne National Laboratory

Repo: https://github.com/argonne-cps/imexlb;//https://github.com/Maccchiatooo/Cylinder-flow

3.6 TAMR

A parallel, adaptive mesh refinement (AMR) code that solves the variable-density incompressible
Navier-Stokes equations and uses the AMReX framework.
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4 Machine Learning Proxy App Suite

ML has become prevalent in HPC not only for data analysis and discovery but also as part of
scientific simulation workflows. This lead the ECP proxy apps team to collect and curate different
ML proxies relevant to scientific applications that represent how unique ML techniques are applied
to DOE science that is different from typical use cases of academia and industries.

In the previous report (Milestone ADCD-504-10), we identified how ML proxies are different
from traditional proxies and also laid out the criteria to select them. In this FY, we have extended
some of the previously developed ML proxies and we have added new proxies to the suite. We
report on this work below.

4.1 Additions to miniRL

As described in the previous milestone reports, miniRL is a proxy app for the Easily eXtendable
Architecture for Reinforcement Learning (EXARL). miniRL uses a simple augmentation to the well-
known Cartpole problem, called ExaCartpole, and uses a Deep Q-Network (DQN) agent. A DQN
agent and its variants work with discrete action spaces where the actions are finite and discrete.
During every step of the environment, the DQN agent either chooses a random action (exploration)
or a best possible action using the learned policy (exploitation) to go from one state to the other.
However, this strategy does not work for environments that operate in a continuous action space
or becomes nonviable for very large action spaces. For such cases, using a policy network that can
act like a function approximator is one possible solution.

The Deep Deterministic Policy Gradient (DDPG) [9,13] is one such algorithm that concurrently
learns a Q-function and a policy. It uses off-policy data and the Bellman equation to learn the
g-function, which in-turn is used to learn the policy. In this approach the maximum Q value is
approximated as Q(s, 1(s)) to determine the policy, pu(s).

The DDPG agent has been added to miniRL and it uses the continuous Pendulum [4] envi-
ronment where p, a frictionless pendulum, starts in a random angle from [—7, 7] with a random
velocity between [—1,1], and the objective is to keep the pendulum standing up. The DDPG
agent in miniRL reaches a reward (Figure 1) that plateaus around -125, which closely matches the
OpenAI Gym leaderboard [3].

The miniRL distribution can be found on Github at https://github.com/lanl/minRL.

4.2 Open Catalyst

The Open Catalyst Project [2] is a collaborative research effort between Fundamental AT Research
(FAIR) at Meta AT and Carnegie Mellon University’s (CMU) Department of Chemical Engineering.
The aim is to use Al to model and discover new catalysts for use in renewable energy storage to
help in addressing climate change.

Scalable and cost-effective solutions to renewable energy storage are essential to addressing
the world’s rising energy needs while reducing climate change. As we increase our reliance on
renewable energy sources such as wind and solar, which produce intermittent power, storage is
needed to transfer power from times of peak generation to peak demand. This may require the
storage of power for hours, days, or months. One solution that offers the potential of scaling to
nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen. To be
widely adopted, this process requires cost-effective solutions to running chemical reactions.

An open challenge is finding low-cost catalysts to drive these reactions at high rates. Through
the use of quantum mechanical simulations (density functional theory), new catalyst structures can
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Figure 1: Reward plot of the DDPG Reinforcement Learning agent with the Pendulum environment.

be tested and evaluated. Unfortunately, the high computational cost of these simulations limits
the number of structures that may be tested. The use of Al or machine learning may provide a
method to efficiently approximate these calculations, leading to new approaches in finding effective
catalysts.

The open catalyst proxy app provides implementations of state-of-the-art ML algorithms for
catalysis that take arbitrary chemical structures as input to predict energy / forces / positions.
The Open Catalyst Project website is https://github.com/mlcommons/hpc/tree/main/open_
catalyst.

4.3 FlexFlow

FlexFlow is a DNN framework that automatically discovers fast parallelization strategies for dis-
tributed DNN training. FlexFlow generalizes and goes beyond today’s manually designed paral-
lelization strategies (e.g., data and model parallelism) for distributed DNN training by exploring
parallelization opportunities across different Samples, Operators, Attributes, and Parameters.

FlexFlow includes a novel execution simulator to evaluate the runtime performance of different
strategies and uses an automated search algorithm to discover highly optimized strategies, which
generally outperform today’s manually designed strategies.

FlexFlow provides the following key features:

e Flexible Parallelization: FlexFlow supports parallelizing DNN training through combinations
of the Sample, Operator, Attribute, and Parameter dimensions, and guarantees that different
parallelization strategies maintain the same model accuracy by design.


https://github.com/mlcommons/hpc/tree/main/open_catalyst
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e Performance Auto Tuning: To accelerate DNN training on a specific parallel machine, FlexFlow
uses guided randomized search to automatically find fast parallelization strategies while re-
quiring no manual effort.

e Keras Support: FlexFlow offers a drop-in replacement for TensorFlow Keras and transpar-
ently accelerates existing Keras programs by discovering faster parallelization strategies.

e Large-Scale GNNs: FlexFlow enables fast graph neural network (GNN) training on large
graphs (e.g., billion-edge) by distributing GNN computations across multiple GPUs (poten-
tially on multiple compute nodes) using attribute parallelism.

The FlexFlow-CandleUno proxy app is the FlexFlow version of the Candle-Uno [1] benchmarks
(https://github.com/flexflow/FlexFlow/tree/r22.05).

4.4 ML Proxy App Suite Release 6.0
Release 6.0 of the ECP ML Proxy App Suite includes the following proxy apps:

miniGAN Models performance for training generator and discriminator networks. The GAN'’s
generator and discriminator generate plausible 2D /3D maps and identify fake maps, respec-
tively.

miniRL A reinforcement learning (RL) proxy application derived from the Easily eXtendable
Architecture for Reinforcement Learning (EXARL) framework, that is designed to use RL
for control and optimization of applications or experiments.

CRADL Captures performance metrics during inference on data from multiphysics codes, specif-
ically ALE hydrodynamics codes.

Cosmoflow-Benchmark Involves training a 3D convolutional neural network on N-body cosmol-
ogy simulation data to predict physical parameters of the universe.

MLperf-DeepCam Trains a deep learning segmentation model for identifying extreme weather
phenomena in climate simulation data.

Open Catalyst Provides implementations of state-of-the-art ML algorithms for catalysis that
take arbitrary chemical structures as input to predict energy / forces / positions.

FlexFlow-CandleUno FlexFlow version of the Candle-Uno benchmarks. FlexFlow is a DNN
framework that automatically discovers fast parallelization strategies for distributed DNN
training.


https://github.com/flexflow/FlexFlow/tree/r22.05

5 Continued Development of New Proxy Applications

Members of the ECP Proxy App Team have been involved in the development of a number of new
proxy applications. Some of these proxies are complete and already in distribution (see the FY21
Proxy App Suite Release report on our project website). However, several of these proxies have
been initially developed and released, but have been extended and enhanced during this F'Y. This
section describes our development efforts.

5.1 FFTX Library and a General Proxy for Verifying Correctness of 3D FFTs

Fast Fourier Transforms are used in a broad range of DOE science applications, including ones
represented in the exascale application space. In 2017, the ECP Application Development leadership
team surveyed the application projects regarding the use of FFTs in their codes. Of the 25 projects,
12 reported current significant use of FFT, and four others anticipated it as a possibility in the
future. Of the 12 teams that use FFTs, all but two reported that they relied at various levels on
community or vendor libraries.

Currently, most scientific applications that call FFTs use either proprietary libraries from ven-
dors, such as MKL from Intel, ACML from AMD, cuFFT from NVIDIA, and LibSci/CRAFFT from
Cray, or the free portable FEFTW library [7]. FFTW applies methods of autotuning and combining
calls to one-dimensional FFT kernels to generate code for multidimensional FFTs. However, FFTW
does not support modern accelerators or advanced architectural features in a way that provides
high performance, and the library is no longer being actively developed.

Hence, ECP has developed a new FFT library called FFTX [11] to fill in the gap identified in the
exascale programming push for a common set of spectral-based algorithms and kernels. FFTX uses
symbolic transformation tools, code-generation techniques, and autotuning to create exascale-ready
high-level FFT packages for multiple applications on multiple platforms.

5.1.1 Implementation of FFTX

FFTX is based on SPIRAL [12], an open-source symbolic analysis and program generation system
that generates platform-tuned implementations of signal processing transforms, as well as combi-
nations of these transforms with other operations such as linear transformations.

Generally, there are multiple ways of performing an FFT on a particular size, depending on the
factorization of the size, with different radices for different factors, and different ways of combining
sub-algorithms for the different radices [14]. Similar to FFTW, the SPIRAL backend of FFTX
builds a directed acyclic graph of FFT algorithms and performs algebraic simplifications on it,
pruning the graph in order to find an efficient overall algorithm for the particular platform. For
this algorithm, SPIRAL generates C code that is compiled and run.

The fork of the FFTX repository used in this report is freely available at:
https://github.com/petermcLBL/fftx
Instructions are given there for cloning the repo, installing SPIRAL, and generating and compiling
examples that are included.

5.1.2 A General Proxy for Verifying Correctness of 3D FFT Calculations

In the FFTX repo, the directory examples/verify has code to check that the answers produced
by a 3D FFT function are correct. The implementation is not just for FFTX but also for FFTW,
cuFFT, rocFFT, and MKL.
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According to Ergiin [6], a sufficient set of tests to verify that an FFT routine is returning correct
answers is the following:

1. Linearity: Test that FFT(aX + 8Y) = oFFT(X) + SFFT(Y) for random inputs X and Y,
and constants « and S.

2. Impulses: Test that the FFT of a unit impulse is a constant function, and vice versa.
Also test that FFT(R) + FFT(I — R) = FFT(I) for random input R, and I either a unit
impulse or a constant function.

3. Shifts: Test that the FFT of a random array shifted in any of the dimensions in the spatial
domain transforms to the FFT of the original array shifted appropriately in the frequency
domain, and vice versa.

The build process for FFTX generates the executable testverify_1ib that runs the tests on all
the 3D sizes that are built in the FFTX library, on four FFT functions: complex-to-complex forward
and inverse, real-to-complex, and complex-to-real. The user specifies the number of iterations of
random data at runtime.

The examples/verify directory also contains code for running the same four FFT functions in
other libraries besides FFTX. At runtime, the user specifies not only the number of iterations of
random data, but also a 3D array size. The executables, for libraries that are available, are in:

o testverify device for NVIDIA’s cuFFT if the cmake build line contains -D_codegen=CUDA;

e testverify device for AMD’s rocFFT if the cmake build line contains -D_codegen=HIP (yes,
same executable name as for cuFFT);

o testverify fftw for FFTW if the cmake build line contains ~-DUSE_FFTW3=1;
e testverify mkl for Intel’s MKL if the cmake build line contains ~DUSE_MKL=1.

5.2 PGAS-FMO: A Proxy for Fragment Molecular Orbital (FMO) Method in
Quantum Chemistry

This proxy app represents the Fragment Molecular Orbital (FMO) method in Quantum Chemistry.
FMO is a popular method for modeling biological systems, such as proteins and drug-enzyme
interactions, owing to its ability to compute thousands of atoms using ab-initio wave functions.
This is achieved by first subdividing a system into smaller parts, or fragments. The total energy is
then expanded as a series in the fragments starting with the monomers, then the dimers, and so
on, as shown below.

FMO-1 . N Vo=
E=) E+ ) (Ey—E—E)l+ ), (Eyx—Epy— Ejx— Epg+ Ep+ Ep+ Eg)|+ ..
I >J I>J>K

Figure 2: The total energy E in FMO is expanded as a series in the fragments starting with the
monomers, then the dimers, and so on.

The FMO approach derives its efficiency from the neglect of inter-fragment exchange (‘nearsight-

edness’ principle)—an approximation managed by careful extension of the series and other model
factors. Also relevant in the present context is the inherent parallelism of FMO. A key component
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of the implementation is the use of a parallel global address space (PGAS)—a paradigm for dis-
tributing data on the fragments over the compute nodes and subsequently providing access. Thus,
to the end-user, this proxy provides insights into both the FMO method and the implementation of
PGAS concepts. Real FMO applications are highly complex and the present proxy app aims in the
first instance to be the simplest possible representation of FMO for the purposes of performance
analyses. Among the planned features of the app is the offload of the compute kernel to GPU
accelerators using OpenMP directives.

5.2.1 Work done in FY22

The development of PGAS-FMO was completed in March 2022. Shown below is a scaling plot of
the ProxyApp:

16,384 atoms
(Intel KNL cluster)

Wall time (min)

1
500 1000 1500 2000 2500 3000 3500 4000

Number of Processes

Figure 3: Strong scaling of the PGAS-FMO proxy application on Theta KNL at ALCF using
MPI+OpenMP. The scaling was done on a system consisting of 16,384 helium atoms, atomic
spacing: 1.2 A, Coulomb cutoff: 10.0 A, point charge cutoff: 20.0 A, and system dimension: 38.4
A. Each atom/fragment is modeled using ten gaussian basis functions.

The finalized implementation of PGAS-FMO proxy application may be obtained from the
PGAS-FMO repository, which has been updated, and it also includes performance data and regres-
sion tests.

5.2.2 Software Deliverables

In addition to being available on the public PGAS-FMO repository, the application was submitted
to the ECP ProxyApps Suite, and was accepted on April 7th.

12
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5.3 miniGAP: A Proxy for Developing Machine Learning-Based Inter-Atomic
Potentials

Most of the computing cycles in leadership computers are spent in atomistic simulations for ma-
terials science and chemistry. The evaluation of energies and forces is ubiquitous in the study
of dynamic properties of materials and molecules. However, this task is extremely demanding,
particularly because long trajectories with a large number of atoms are needed to model realistic
scenarios. Reduced scale methods, such as force fields and coarse grain, are useful when several
thousands of particles are simulated. These approaches are highly dependent on the parametrized
forms of the force potential, and existing potentials hardly neither include high order energy terms
nor do they capture the physics of complex interactions, such as van der Waals interactions or
chemical bond breaking. In the last five years, Machine Learning potentials (MLIP) have become
very efficient in accurately predicting energies and forces of atomic structures using only a fraction
of time of quantum mechanical computations, although their computational cost is higher than for
traditional force fields.

In particular, non-linear and non-parametric approaches, such as Gaussian Progress Regres-
sion (GPR) and Neural Network models have gained traction within adopters of MLIP. GPR is
particularly useful when the amount of data is limited. Moreover, GPR could easily estimate the
associated error of the prediction, or covariance, which is inherent from the properties of the Gaus-
sian functions. An important advantage of GPR over other regressors is that it requires fewer
hyperparameters for its optimization.

The miniGAP proxy application focuses on GPR and the atomic descriptors that enable pre-
diction of properties and force fields of materials at large scale. Particularly, the Smooth Overlap
of Atomic Position (SOAP) descriptor has shown a good performance distinguishing small changes
in the 3D structures of molecular systems and bulk materials.

5.3.1 Work done in FY22

The project has made significant progress in the implementation of GPR, where we have used
Tensorflow and OpenMP for the descriptor generation.

Time for fitting and prediction Full GPR
8.00
7.00
6.00
5.00

4.00 uCPU

= P100
V100

3.00

Time/log2(sec)

2.00
1.00

0.00
nmax=4, Imax=4 nmax=6, Imax=4 nmax=6, Imax=8

SOAP parameters *reut=4.0

Figure 4: Performance of fitting and prediction of minigap code of 3000 molecules from QMT7b
database. These performance tests were run on the JLSE test platform at Argonne on A100 Nvidia
GPUs, where the offloading to the GPUs was done using the CUDA specific APIs in TensorFlow
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The release updated miniGAP ProxyApp, available from (https://git.cels.anl.gov/vama/
minigap), consists of the improvements:

1. Developed the preprocessing data and regression tests on test beds, such as Intel Xe and
AMD GPU.

2. Tested I/O and inference for extended systems.
3. Added OpenMP GPU to descriptor generation

5.3.2 Software Deliverables

In ProxyApps is available on the public miniGAP repository. The ProxyApp is in the process of
being included in the ECP ProxyApps Suite.

5.4 QTensor-mini: A Proxy for Quantum Tensor Contraction Simulators

We developed a proxy app for our specialized Quantum Approximate Optimization Algorithm
(QAOA) quantum circuit simulator. QAOA is the most studied quantum optimization algorithm
and is considered to be the prime candidate for demonstrating quantum advantage. There is a
worldwide race underway amongst top quantum information science researchers to find combinato-
rial optimization problems, and their instances, that run efficiently and faster on quantum devices
rather than on classical computers—the so called quantum advantage. A demonstration of this
would be a significant achievement in computational science.

The Argonne-developed quantum simulator QTensor is written using a tensor network contrac-
tion technique, which is exceptionally well suited for simulating short quantum circuits like QAOA
quantum circuits. For example, our simulator is much faster than ones provided by vendors like
IBM and Google, which are using an older state-vector simulation approach. It is worth noting
that QTensor aims to be able to perform effectively on a wide array of HPC hardware (especially
exascale machines), to best suit the needs of anyone studying QAOA circuits, a particular type of
quantum circuit important to Quantum Machine Learning and Optimization problems.

We surveyed the ECP Proxy Apps suite and found that it lacks an application which models
the memory and time costs of tensor network contractions. Tensor networks provide an abstract
representation of higher order tensors which effectively reduces their often prohibitive memory
requirements for storage. However, this reduction in storage cost potentially requires prohibitive
costs in time and space for evaluation, depending on the structure of the network representation.

Our primary goal is to develop a proxy app for QTensor, but it is important to note that
tensor networks have widespread application, both in Scientific Computing and Machine Learning.
In Machine Learning and Statistical literature, one example of their use is found in Probabilistic
Modelling. Tensor networks are the key to the evaluation of probabilistic graphical models, which
are used to reason about probabilistic systems with complex dependency structures. Another
example may be found in Constraint Satisfaction literature, where tensor networks may be used as
efficient solvers for some CSP instances.

QTensor-mini is vital to achieving the QTensor’s goal of widespread success on HPC hardware
(especially for upcoming exascale supercomputers Aurora and Frontier). The proxy application
enables efficient exploration of the relevant design space, and in addition, serve as a compact,
sharable demonstration of tensor network based algorithms. To target both homogeneous and
heterogeneous computing platforms, we are developing our proxy app to target both CPU and
mixed CPU/GPU platforms. Our app requires few dependencies, needing only a BLAS library for
each of the targeted processors.

14
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This app should also serve as a soft proxy for ExaTn, a high performance tensor library in
development at Oak Ridge National Lab, whom the QTensor team is working closely together with
to target upcoming exa-scale supercomputers.

5.4.1 Work done in FY22

The project ended in spring 2022. During the period from January to April, our work focused on
finding optimal tensor network contraction sequences. This work led to the development of new
algorithms and the submission of the paper to the prestigious Institute of Electrical and Electronics
Engineers (IEEE) High-Performance Extreme Computing (HPEC) conference, where the paper won
the best student award.

5.4.2 Publications

e Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, Ilya Safro, Constructing Optimal
Contraction Trees for Tensor Network Quantum Circuit Simulation, https://doi.org/10.
48550/arXiv.2209.02895

5.4.3 Deliverables

The QTensor-mini ProxyApp available for download. We have initiated the process of spackifying
the code and having it included in the ECP ProxyApps suite.

5.5 HyPar: A Proxy for Compressible Navier-Stokes Solvers on Structured
Grids

HyPar, which stands for Hyperbolic-Parabolic Partial Differential Equations Solver, is a finite-
difference framework to solve any general hyperbolic-parabolic set of partial differential equations
(with source terms) on Cartesian (structured) grids. The rationale for the creation of HyPar was to
provide a variety of spatial discretizations, and temporal integration schemes, as well as a parallel
implementations with various device (GPU) abstraction layers, to evolve a system of PDEs on
heterogeneous computing platforms. Of the spatial discretizations that are available in HyPar, the
WENO and compact reconstruction WENO (CRWENO) schemes have been use as the “solver”,
or engine, to evolve the compressible Navier-Stokes equations for shock dominated flows.

With the move to using high-order spatial discretizations for direct numerical simulations (DNS)
and large eddy simulations (LES), there is a need for a ProxyApp for simulating compressible flows.
The WENO and CRWENO schemes have become popular for computing flows with shocks, owing
to low dissipation and dispersion properties in these schemes. The WENO/CRWENO schemes, in
particular, have the twin advantages of being robust, minimally dissipative schemes, that also one
have a compact stencil.

Our aim in this project, therefore, was to extend the usability of HyPar to solve the compressible
Navier-Stokes equations on heterogeneous computing platforms (i.e., CPU+GPU) by building into
it the ability to offload computations from the CPU to the GPU using several device abstraction
layers, such as CUDA, DPC++, and Kokkos (with the SYCL backend) that are available in the
Nvidia NVHPC, and Intel oneAPI programming environments. The science problem that was
identified, to demonstrate the code transformation of the MPI-only code to MPI+X (with “X”
being CUDA, DPC++, Kokkos) is that of decaying isotropic turbulence in compressible flows.
We believe that by using the WENO and CRWENO schemes in HyPar to simulate the model
problem on heterogeneous computing platforms (e.g., Summit, Aurora, Frontier), HyPar would be
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an effective ProxyApp for compresssible flow solvers. We envisage HyPar being used either as an
engine for other existing finite-difference compressible flow solvers, or one could choose to extend
HyPar to be a full-fledged flow solver, for evolving compresssible flows, in complex geometries on
heterogeneous computing platforms.

5.5.1 Work done in FY22

In FY22, we continued the developments we had initiated in FY21 by focusing on the performance
of MPI4+CUDA implementation in Nvidia GPU based computing platforms. Our objective was
to establish a baseline against which subsequent comparisons could be made with DPC++ and
Kokkos implementations. Therefore, our kernel design principles to efficiently implement HyPar
with CUDA focused on optimizing its memory access patterns. Since many core operations of HyPar
are memory-bound, it is crucial for computational performance to avoid slow memory transactions,
and to reduce as many wasted compute resources and memory transactions as possible. The steps
we took to optimize computational performance on GPUs are as follows:

e Completed refactoring the MPI-only HyPar code by moving up the code stack to implement
the remaining routines on GPUs to avoid costly data transfer of intermediate results between
the host and device.

e Implemented lexicographic thread configuration.
e Implemented coalesced memory access.

e Implemented distributed (MPI) computation between compute nodes using GPU-aware MPI.
Analyzed the impact of communication and communication frequency on the total computa-
tion time and convergence, respectively.

We present the computational performance of our MPI+CUDA implementation on the isotropic
turbulence decay of compressible flow. We compare the CPU+GPU computation time with that
of the MPI-only based (CPU) implementation, and also demonstrate the scalability of our imple-
mentation using multiple GPUs. The tests to assess the performance of HyPar were performed on
OLCF /Summit where each compute node has 6 NVIDIA Volta V100 GPUs and 2 POWER9 CPU
sockets with 22 physical cores each and 4 hardware threads on each physical core.

5.5.2 Unit Performance: One GPU vs. one CPU core

In the case where multiple GPUs are employed as in Section 5.5.3, our observation provides a
guideline for determining the appropriate number of grid points to be assigned to each GPU to
prevent resource under-utilization.

5.5.3 Parallel Performance: Multiple GPUs using MPI

5.5.4 Publications

e Youngdae Kim, Debojyoti Ghosh, Emil M. Constantinescu, Ramesh Balakrishnan, GPU-
accelerated DNS of compressible turbulent flows, Computers & Fluids, Volume 251, 30 January
2023, Elsevier, https://doi.org/10.1016/j.compfluid.2022.105744
5.5.5 Deliverables

The MPI+CUDA implementation of the HyPar ProxyApp has been verified and is available for
download. We had initiated the process of spackifying the code, and it is in the process of being
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Figure 5: The wall times of one GPU and one CPU core, respectively, for executing 100 time steps
over varying grid sizes. Once we reach a grid with 642 points, the computational resources on GPUs
start to saturate. This has been verified by comparing the computation time with grids of sizes 643
and 1283, where the wall time increases exactly at the same rate as the increase of the grid size in
this case.
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Figure 6: Strong scaling over a grid with 2562 points. We note that a grid with 2083 points is the
maximum size that HyPar can run on one GPU because of the 32 GB memory limit on V100. For
V100 with 16 GB of memory, the maximum size is around 1603. Communication between GPUs
was performed via CUDA-aware MPI, which allowed us to directly communicate between memories
of multiple GPUs on the same or different nodes without staging them through CPUs.
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included in the ECP ProxyApps suite. We will continue to update the publicly accessible Github
repository with MPI4+Kokkos and MPI+DPC++4 implementations.

5.6 IMEXLBM: A Proxy for Weakly Compressible Lattice Boltzmann Solvers
on Structured Grids

The Lattice Boltzmann Method (LBM) [8] is a relatively novel approach to solving the Navier-Stokes
equations (NSE) in the low-Mach number (weakly compressible) regime and its governing equation
can be derived from the Boltzmann equation after discretizing the phase space with constant
microscopic lattice velocities. One major drive behind the use of LBM in the CFD community
is the ease of parallelization, but the increasing popularity of LBM can also be attributed to its
unique feature: LBM solves a simplified Boltzmann equation that is essentially a set of first-order
hyperbolic PDEs with constant microscopic lattice velocities, for which a plethora of simple yet
excellent discretization schemes [10] are available. Furthermore, all the complex non-linear effects
are modeled locally at the grid points. Thus, the overall numerical scheme becomes extremely simple
and efficient. LBM can deliver better solution quality than a comparably discretized NSE solver
at substantially lower computational cost. Furthermore, the linear advection part of LBM can be
solved exactly due to unity CFL property. The absence of dispersive and dissipative errors in LBM
makes it an ideal choice for the simulation of turbulent flows, interfacial flow, and acoustics, in which
conservation of kinetic energy, and isotropy play a crucial role. The highly scalable IMEXLBM
ProxyApp suite that can be run on a variety of platforms is a first step towards the development
(or modification) of other full-fledged LB codes (e.g. Palabos), and is a much needed building block
for simulating multiphase flows on exascale computing platforms at Argonne National Lab and the
other DOE laboratories.

5.6.1 Work done in FY22

FY22 began with the development of IMEXLBM for C++ on the host (i.e CPU). The parallel
model employed here was message passing interface (MPI)-only. It was developed, verified and
validated for a common CFD benchmark, flow past a sphere (3D) [15]. Following this, our team
began to develop the code to use the performance portable library, Kokkos, to enable execution
on the device (i.e. GPU) of heterogeneous platforms. Much of the work in FY22 was focused on
optimizing the MPI4+Kokkos version of IMEXLBM on the ThetaGPU platform at ALCF [5].

5.6.2 Scaling and Performance: Single Phase Flow over a 3D Sphere and a 3D Taylor-
Green Vortex

In IMEXLBM the strong scaling and weak scaling were performed for 3D sphere flow and the 3D
Taylor-Green Vortex simulation. All the performance and simulation data in this document were
generated on the ThetaGPU cluster at the Argonne Leadership Computing Facility [5].

The validation of the GPU acceleration is performed by the simulation of flow over a 3D sphere.
The simulation results from the MPI4+Kokkos code CPU+GPU was compared with the pure MPI
code and the differences were determined to be about 107'6 which means the simulation results
from GPU are consistent with the results calculated from CPU. The results of the 3D scaling
and performance study are shown in FIG.7 (a) and (b). The GPU cases have slightly better
performances than the CPU cases when the number of processors are small. When we increase the
devices number to 8, GPU cases performance is twice speed to the CPU performance.

18


https://palabos.unige.ch/

5.6.3 Two-Phase Simulation: Single Droplet inside a 3D Taylor-Green Vortex

We extended our work by adding physical complexity. In particular we sought to understand
the performance and feasibility of performing a two-phase, sharp interface calculation. We focus
the dynamics to be non-mixing hence a binary fluid where properties may change over a small
distance (i.e. the interface). These simulations are difficult from a modeling perspective as it
requires a solver of another particle distribution function (to resolve the interface) along with a
surface tension force which involves first and second order derivatives. Resolving derivatives adds
further burden to computation through communication with sending and receiving messages in
ghost-layers. To better understand the effect of computing a derivative on the performance, we
implement two numerical derivative methods: the local derivative method [15] and the isotropic
finite difference method [15], to the model, and study the short-time shape evolution of a single
droplet inside of Taylor-Green Vortex.

The weak scaling and strong scaling of this case is shown in Figure 7 (c), (d). From the weak
scaling, because we introduce another particle distribution function (PDF), the average time per
simulation step for single droplet evolution is nearly twice of the single phase case. When we
increase the number of the processors, the average time per step for the local derivative case is less
than isotropic finite difference case. Since the local derivative is only calculated on the device i.e.
GPU without MPI data transfer, it saves a lot of time. The strong scaling in Figure 7 (d) also
proves that the local derivative method is more efficient compared to the isotropic finite difference
method. However, when we choose the local derivative method, we need to increase the interface
thickness to obtain a consistent result with isotropic finite difference. For a small scale problem,
the isotropic finite difference is able to gain an accurate result with similar performance. When we
consider a large scale problem, the local derivative method can be chosen to improve the efficiency
of the code.

5.6.4 Publications

e Zhao, C., Patel, S., Lee, T., & Balakrishnan, R. IMEXLBM: A GPU-accelerated, lattice
Boltzmann solver for exascale machines. (In preparation)

e Zhao, Chunheng. Ternary flow simulations based on the conservative phase field, lattice
Boltzmann method. 2022. The City College of New York (CUNY). PhD Dissertation (in
preparation).

5.6.5 Deliverables

e IMEXLBM C++ Suite for single phase flows with Kokkos directives on GPUs
URL: https://github.com/argonne-cps/imexlb

o IMEXLBM C++ Suite for single phase flows with DPC++ directives on GPUs

Current URL: https://github.com/Maccchiatooo/Cylinder-flow
Target URL: https://github.com/argonne-cps/imexlb
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(c), (d). Comparison between the simulation running on CPU and GPU is shown in (a) and (b).

When we run the simulation on 64 processors, the speedup ratio nearly reach 10. The speed of
single phase Taylor-Green Vortex is almost twice of the multi-phase simulation (single droplet in

Taylor-Green Vortex). Results gathered on on ThetaGPU [5]
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the performance of the full loop (collision+propagation+updation), and the propagation.
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