
Quantitative Performance Assessment

of Proxy Apps and Parents
Report for ECP Proxy App Project Milestone ADCD-504-28

Jeanine Cook1, Omar Aaziz1, Si Chen3, William Godoy2, Amy Jo Powell1, Gregory
Watson2, Courtenay Vaughan1, Avani Wildani3, and The ECP Proxy App Team4

1Sandia National Laboratories, Albuquerque, NM
2Oak Ridge National Laboratory, Oak Ridge, TN

3Emory University
4https://proxyapps.exascaleproject.org/team

April 2022

SAND2022-6149 R

1

https://proxyapps.exascaleproject.org/team

Contents

1 Executive Summary 3

2 Modeling pre-Exascale AMR Parallel I/O Workloads via Proxy Applications 4

3 Definition of More Accurate Performance Counter Groups 17

4 Data Processing for Input to ML Stage 32

5 Proxy/Parent Application Kernel Comparison 37

6 Proxy Apps: Do they Predict Performance of Their Parents? 45

7 Acknowledgments 52

A Performance Counter Groups 53

B Application Profiles 54

2

1 Executive Summary

The ECP Proxy Application Project has an annual milestone to assess the state of ECP proxy ap-
plications and their role in the overall ECP ecosystem. Our FY22 March/April milestone (ADCD-
504-28) proposed to:

Assess the fidelity of proxy applications compared to their respective parents in terms
of kernel and I/O behavior, and predictability. Similarity techniques will be applied
for quantitative comparison of proxy/parent kernel behavior. MACSio evaluation will
continue and support for OpenPMD backends will be explored. The execution time
predictability of proxy apps with respect to their parents will be explored through a
carefully designed scaling study and code comparisons.

Note that in this FY, we also have quantitative assessment milestones that are due in September
and are, therefore, not included in the description above or in this report. Another report on these
deliverables will be generated and submitted upon completion of these milestones.

To satisfy this milestone, the following specific tasks were completed:

• Study the ability of MACSio to represent I/O workloads of adaptive mesh codes.

• Re-define the performance counter groups for contemporary Intel and IBM platforms to better
match specific hardware components and to better align across platforms (make cross-platform
comparison more accurate). Perform cosine similarity study based on the new performance
counter groups on the Intel and IBM P9 platforms.

• Perform detailed analysis of performance counter data to accurately average and align the data
to maintain phases across all executions and develop methods to reduce the set of collected
performance counters used in cosine similarity analysis.

• Apply a quantitative similarity comparison between proxy and parent CPU kernels.

• Perform scaling studies to understand the accuracy of predictability of the parent performance
using its respective proxy application.

This report presents highlights of these efforts.
Section 2 reports on the evaluation of MACSio for block structured AMR codes.
Section 3 reports the new performance counter groups we defined for all of the available IBM

Power9 and Intel Skylake performance events. We also present the results of the proxy/parent
application similarity studies we did on the two system platforms using the new event groups.

Section 4 presents how we accurately process all of the data we collect for an application on all
of its ranks to generate a single data vector to be used in cosine similarity analysis.

Section 5 reports the work done to quantify the similarity in hardware usage/behavior of prox-
y/parent primary kernels.

Finally, Section 6 describes the study and results that quantify the accuracy in which a proxy
app predicts the execution time of its respective parent.

3

2 Modeling pre-Exascale AMR Parallel I/O Workloads via
Proxy Applications

The work presented here satisfies the ADCD504-32 quantitative assessment milestone:
Continue MACSio evaluation on AMRex based codes. Submit results in a workshop/conference
paper.

As we approach the exascale era in the next generation of supercomputers [22], it is crucial to
understand high-performance computing (HPC) computational, communication and input output
(I/O) workloads in massive, large-scale scientific applications in order to effectively utilize the power
of these systems [9, 24]. This understanding becomes extremely complex and sophisticated due to
the large number of factors involved in the end-to-end operation, from the existing algorithms in a
scientific application or workflow, to the computing and communication patterns when fine-tuning
the software stack parameters for a particular platform.

Adaptive Mesh Refinement (AMR) [10] is a powerful technique used for solving partial differ-
ential equations. AMR simulations running at scale are computationally and I/O intensive [25].
The I/O characteristics rely heavily on several aspects related to the parallelization, load balancing
and domain decomposition strategies, user input specifying output frequency, and the problem-
dependant configuration of the physics in a particular application. In addition, parallel I/O capa-
bilities are often managed independently from the computational capabilities in large leadership
facilities, thus applications can increasingly become I/O bound due to the different rates of im-
provements in hardware (parallel file system and storage throughput), and software (parallel I/O
libraries) when compared to computational capacity [25].

We evaluated the use of the Multipurpose, Application Centric, Scalable I/O (MACSio) [27]
framework as a lightweight proxy solution to model I/O characteristics of AMR simulations based
on the well-established AMReX framework for massively parallel, block-structured AMR appli-
cations [41]. We built a simple “generalized” model based on data collected from AMReX-based
inputs and analysis data outputs that can be translated to MACSio command-line parameters in or-
der to replicate data production patterns observed in a simulation. The goal of this effort is to close
the gap between the I/O characterization of specific use-cases in AMReX-based applications and
using MACSio as a general, lightweight, kernel proxy I/O tool that can capture the non-linearities
of the observed AMR data generation. Having a calibrated lightweight proxy application for I/O
is a valuable tool in the codesign process for understanding I/O system dynamic characteristics
and trade-offs across AMReX-based codes on exascale systems without having to undertake the
deployment of full-scale applications.

2.1 Methodology

The methodology used to characterize the output portion of the I/O from parallel runs of an AMR
application and the model scope and assumptions for the translation to a proxy application using
MACSio input parameters are similar to those identified by Dickson et al. [11] in their work with
MACSio. This can be summarized as follows:

1. Run existing simulations as a point of reference for the I/O generated by the AMReX Castro
infrastructure

2. Identify the important input parameters that drive the I/O simulation outputs (checkpoint
and analysis data) to determine the basis for a variability study

4

3. Characterize the output generated given a variety of input parameters in AMReX Castro’s
configuration file

4. Evaluate the I/O behavior of AMReX Castro and determine what functionality (if any) is
missing from MACSio in order to replicate this behavior

AMReX
Castro
check-
point /
analysis

out-
puts =
f(AMR
inputs)

Model
MACSio
inputs =
g(AMR
inputs)

MACSio
Proxy
I/O

outputs

Figure 1: High level flow description of the methodology used in this study to generate a MACSio
Proxy I/O model application that captures AMReX based I/O. g represents the functional form of
the proposed model based on MACSio functionality.

The flow is illustrated in Fig. 1. This shows a schematic representation of how AMReX Castro
inputs and the generated output can be associated with a proxy I/O model. MACSio is used to
simulate potential outputs using a set of “AMR inputs” typically given in a user configuration
file. Since the goal is to first understand the role of I/O in an AMR simulation rather than the
complexity of the simulation and/or computation, we chose to study the Sedov 2D cylindrical case
in Cartesian coordinates for a typical input file1. This test is readily available in the Castro suite
of examples and shows a physical symmetry and can be used to isolate the AMR effects on the I/O
on a simple problem.

2.1.1 AMReX Castro Parameterized Runs

The output directory structure for the generated analysis data (in the form of plot files) can be seen
in Fig. 2. This default output is done using a N − to−N pattern, where each of N message passing
interface (MPI) tasks writes to a separate file, for the data produced at each refinement level of the
simulation. Additional metadata is also produced at the top level in a file called Header and in each
directory level in files called Cell H. Note that a file is only produced if there is data generated
on a particular task at the corresponding mesh level. AMReX also supports the generation of
checkpoint-restart data in a similar manner, but we focused on only the plot files for this particular
study.

In order to understand the output behavior it is necessary to generate multiple runs of Castro
with varying input file configurations. We performed this parameter analysis on Summit using MPI
for parallelization. We used a standard input configuration file as our baseline to understand the
structure and size of the resulting output and to determine the input parameters that influence the
output generation. Table 1 shows the input parameters that we focused on for this study.

Aside from those input parameters expected to have direct influence on the analysis data gener-
ation in Fig. 2, such as the frequency of output file generation, the number of cells at the base mesh

1https://github.com/AMReX-Astro/Castro/blob/main/Exec/hydro_tests/Sedov/inputs.2d.cyl_in_

cartcoords

5

https://github.com/AMReX-Astro/Castro/blob/main/Exec/hydro_tests/Sedov/inputs.2d.cyl_in_cartcoords
https://github.com/AMReX-Astro/Castro/blob/main/Exec/hydro_tests/Sedov/inputs.2d.cyl_in_cartcoords

AMReX Castro Simulation Output

sedov 2d cyl in cart plt00000 per-step

Header metadata file

job info metadata file

Level 0 per-level

Cell D 00000 per-task file

Cell D 00001

...

Cell D 0000N

Cell H mesh metadata file

Level 1

Level 2

..

Level L

sedov 2d cyl in cart plt00020

..

sedov 2d cyl in cart pltMMMMM

Figure 2: Castro file plot analysis output structure for the Sedov 2D cylinder in Cartesian coordi-
nates case.

amr.max step maximum expected number of steps
amr.n cell number of cells at Level 0 in each direction
amr.max level maximum level of refinement allowed
amr.plot int frequency of plot outputs
castro.cfl CFL condition

Table 1: Subset of AMReX Castro input configuration file parameters varied to understand output
behavior in the Sedov hydrodynamics baseline case.

6

MACSio data output

data

macsio json {taskID} {stepID}.json
macsio json 00000 000.json

macsio json 00000 001.json

...

macsio json 00000 {nsteps}.json
...

macsio json {nprocs} {nsteps}.json
metadata

macsio json root {stepID}.json
macsio json root 000.json

macsio json root 001.json

...

macsio json root {nsteps}.json

Figure 3: MACSio’s N − to −N output pattern using the miftmpl interface ordered by task and
output step, in which nsteps is the total number of steps, and nprocs is the number of MPI tasks.

(Level 0), and the maximum number of steps, we also focused on parameters that might impact
on the mesh refinement. The two primary candidates for these were the CFL condition and the
maximum number of refinement levels allowed, so were also considered in the set of parameterized
runs.

Each run generated corresponding data that was used to quantify the cumulative output sizes
at each requested time interval, refinement level, and task, as described in the hierarchy shown in
Fig. 2. The selected granularity made it easier to understand the data production at the lowest
single file level, while also giving an idea of how balanced (or not) the output was in a simple
AMReX application. The results are discussed in more detail in section 2.2.

2.1.2 Modeling outputs with MACSio as a Proxy

After characterizing the AMReX Castro I/O behavior, the next step was to provide a simple
way to simulate the observed I/O patterns using a proxy application. One of the immediate
trade-offs when replicating AMReX I/O patterns with MACSio is the level of granularity of
the generated output shown in Fig. 2. While AMReX generates outputs based on the tuple
(timestep, refinement level,MPI task), MACSio only provides enough granularity to generate
outputs based on (timestep,MPI task). Nevertheless, the simplicity of MACSio makes it a wor-
thy candidate for assessing if an approximate solution could simulate deterministic characteristics
such as data size, computational overhead, and I/O burstiness at different scales. The latter al-
lows a model to be constructed that could help practitioners understand random and dynamic
system characteristics such as bandwidth, file system variability, and scalability, prior to running
full AMReX-based simulations on different hardware platforms.

MACSio provides a simple command-line interface that allows the user to specify how to capture
and generate several types of I/O characteristics. We used the default N−to−N output generation
from the AMReX-Castro Sedov cases to determine if MACSio can provide a valid approximation
to AMReX-Castro I/O patterns for data generation at each timestep. This pattern is shown in
Fig. 3 for data and metadata files generated from the MACSio executable.

Table 2 shows the MACSio parameters we used in this study to fine-tune the data generation.

7

MACSio Argument Description

interface output type hdf5, json (miftmpl), silo
parallel file mode File Mode: multiple independent, single
num dumps number of dumps to marshal (buffer)
part size per-task mesh part size
avg num parts average number of mesh parts per task
vars per part number of mesh variables on each part
compute time rough time between dumps
meta size additional metadata size per task
dataset growth multiplier factor for data growth

Table 2: MACSio command line arguments used to model AMReX-Castro outputs.

Listing 1: Proxy app model formulation for mapping MACSio executable to AMReX Castro inputs
on Summit.

jsrun -n nproc

macsio

--interface miftmpl

--parallel_file_mode MIF nproc

--num_dumps amr.max steps
amr.plot int

--part_size f(amr.n cell)

--avg_num_parts 1

--vars_per_part 1

--compute_time f(platform,all inputs)

--meta_size f(all inputs)

--dataset_growth f(amr.n cell,castro.cfl,amr.maxlevel,...)

We found the most important parameters were the interface, parallel file mode, part size,
and dataset growth. The latter parameter enables MACSio to approximate non-linear data gen-
eration. The ultimate challenge, however, was to fine-tune these parameters to create a proxy I/O
model to a level of granularity that is helpful in identifying I/O characteristics in AMRex-Castro.

When comparing the AMReX and Castro inputs in Table 1 and MACSio inputs in Table 2, it
can be seen that MACSio parameters as such: interface parallel file mode, and num dumps

can be easily mapped to the simulation inputs. As such, the constructed model in MACSio will
have the functional form shown in Listing 1.

The remaining challenge then is how to determine the relationship between the part size and
the dataset growth parameters as data is generated from AMR simulations. Other parameters
that are “runtime” in nature such as compute time and meta size can be determined after col-
lecting data runs. In particular, compute time represents a degree of freedom that can be adjusted
independently of “static” data size modeling for “dynamic” studies to fine-tune the I/O “burstiness”
on a particular platform.

2.2 Results

This section applies the methodology shown in Section 2.1 on parameterized runs on the Castro
solution of the 2D Sedov blast wave standard hydrodynamics test problem [36]. First, data output
characteristic are presented for multiple configurations running on Summit. The next step is to
construct a functional form of the model shown in Listing 1 via a minimization process varying the
parameters in the MACSio executable. We also list the limitations, current scope and potential

8

use of MACSio as a proxy application to model I/O in AMR simulations.

2.2.1 AMReX Castro Sedov Parameterized Outputs

The Castro Sedov hydro test generates a straight-forward I/O pattern in which each MPI task
outputs the data for each region, at each level, at each requested time interval in the simulation.
Based on the resulting outputs, we can infer that this is done in a “burst buffer” traditional
pattern: the computation runs for some time, then the output is generated in a single “burst” for
each time step requested in the input configuration file. Since AMReX provides two methods for
writing analysis data, WriteSingleLevelPlotfile and WriteMultiLevelPlotfile, we assumed
that the latter is being used by Castro by default based on the file structure shown in Table 1.
Figure 4 illustrates the AMR solution and expected physical results of the baseline symmetric Sedov
test. It can be seen that the fine-grained refined levels are generated near the source terms of the
hydrodynamics problem as expected in AMR formulations.

(a) (b)

Figure 4: Sedov hydro case 2D cylinder in Cartesian coordinates pivot case used as a benchmark in
this study showing (a) AMR mesh showing the moving refined levels, and (b) solution for the Mach
number after 20 timesteps. The lower levels follow the solution in the middle affecting overall load
balancing, partitioning and I/O.

In total, 47 runs were performed on Summit at different scales while varying the parameters
listed in Table 1 along with the number of files generated as a function of the number of MPI tasks
(nprocs). The parameter ranges are summarized in Table 3 showing the scope of the present study,
along with the amr and castro parameters that were used. The number of MPI tasks (nprocs)
and the number of Summit nodes were also varied accordingly to run cases, from small mesh sizes
of 32 × 32 ≈ 1K cells, to a large mesh size of 131, 072 × 131, 072 ≈ 17B cells using up to 512
Summit nodes, or equivalent to 1/9 of the 4,608 total system nodes. The expectation is that these
ranges would provide enough information to understand the feasibility and scope of MACSio as
a simple proxy application by isolating the computational aspects of the baseline AMReX Castro
Sedov case.

To illustrate the non-regular output characteristics of the generated runs, the independent
variable x is considered a function of the user-prescribed number of cells at the “L0” base level,
amr.ncells in Table 1, and the count of the number of output events up to the maximum number
of steps, amr.max step in Table 1, thus resulting in a cumulative quantity. The rationale is that any
data output sizes must be proportional to the size of the problem at each requested output event.

9

Parameter Range
amr.max step 40 - 1000
amr.n cell (32× 32) - (131, 072× 131, 072)
amr.max level 2 - 4 (1 to 3 levels)
amr.plot int 1 - 20
castro.cfl 0.3 - 0.6
nprocs 1 - 1,024
Summit nodes 1 - 512 (1/9 total system)

Table 3: AMReX Castro input configuration file parameters range for the Sedov case running
imulations to produce different output sizes.

As a result, the independent variable in our model is expressed as a function of the cumulative
independent variable (x), and the dependent output size (y) at three hierarchical levels:

x = output counter × ncells (1)

output counter = 1, ...,max step

ncells = NxNy

y = data outputi (2)

i = time step, level, task

The cumulative output sizes at each time step are shown in Fig. 5 for a subset of cases varying the
parameters listed in Table 1. It can be seen the mixed linear and non-linear outputs characteristics
for the selected range, while some of the larger cases are excluded for illustration purposes. It can
be seen that several runs follow a near-linear trend as expected when the x variable in Eq. (1) grows
with the L0 number of cells. However there is clearly another set of runs that deviate from this
linear behavior, and this prompts further inspection in order to better understanding the nature of
the generated output.

To understand the non-linear behavior in output sizes, one of the cases was selected as a pivot
(case4) with Nx = 512 and Ny = 512 containing 20 outputs. As shown in Fig. 6, it is observed that
while the CFL number has some influence on the overall output size, the number of AMR levels has
a larger effect and explains the behavior on the other cases that deviate from the observed linear
trend in Fig. 5.

Further analysis is thus needed to understand how output is distributed among AMR levels,
for each level in the output hierarchy (timestep, level, task) as illustrated in Fig. 2. The latter is
shown in Fig. 7 for the pivot case (case4). As expected, the L0 level remains almost constant as it is
mainly a function of the user-input number of cells. Subsequent levels in the AMR refinement (L1,
L2) are more sensitive as they are driven by the physics (e.g. larger gradients) and the stability
of the meshing algorithm (e.g. CFL number). An interesting aspect is that the overall “per-level”
output shows a smooth variation. This opens the potential for creating a “kernel” solution like
MACSio, by separating and superimposing the “linear” behavior from L0 and the “non-linear”
smooth behavior of more refined levels (L1,L2).

Data generation as a function of each mesh level and task is shown in Fig. 8. The data produced
by each MPI task gives an indication of the AMR effects on load balancing and the predictability
of the I/O using a “kernel” tool like MACSio. Data is generated for 5 output steps, for a simulation

10

103 106

106

109

Figure 5: Cumulative output size per output step as a function of the cumulative number of output
cells as defined in Eqs. (1) and (2) for the Sedov 2D case running on Summit.

1.0×106 2.0×106 3.0×106 4.0×106 5.0×106
0

5.00×108

1.00×109

1.50×109

2.00×109

2.50×109

Figure 6: Dependency on the CFL number and AMR number of discretization levels for the cumu-
lative output size for a single Sedov simulation run using 2 Summit nodes, 32 tasks and a L0 base
mesh of 512× 512 cells.

of the Sedov case (identified as case27) using 64 ranks on a 1, 024× 1, 024 L0 base mesh. As can be
seen, AMR effects result in unbalanced loads at all 4 levels of the resulting mesh hierarchy. Further
investigation is needed to understand the relationship within AMR levels and MPI decomposition

11

1.0×106 2.0×106 3.0×106 4.0×106 5.0×106

0

5.00×108

1.00×109

1.50×109

Figure 7: Dependency of the cumulative output size for each AMR level (L0,L1,L2) as a function
of the cumulative number of output cells and CFL number for the Sedov 2D case.

algorithms in AMReX and possible predictability, even in simple configurations such as the Sedov
case. Nevertheless, this is an indication that this level of granularity is highly volatile, even for
a simple and symmetric problem. Therefore, the model construction using the current MACSio
“kernel” characteristics can only simulate data output loads up to a mesh “level”, but not at the
“rank” level in the AMReX output. This current MACSio limitation is a consequence of its data
output model described in Fig. 2.

2.2.2 MACSio Model

The next step is to provide a simple way to simulate the observed I/O patterns using a proxy
application. As explained in Section 2.1, MACSio was used due to its command-line simplicity and
versatility for high-performance simulations. While AMReX applications generate an I/O pattern
that is dependent on timestep, refinement level, and output type, our goal was to demonstrate that
MACSio could capture enough of the non-linearity behavior observed in Fig. 5 to provide an approx-
imate solution that could simulate deterministic characteristics such as data size, computational
overhead, and I/O patterns loads.

The AMReX Castro Sedov result (identified as case4) illustrated in Fig. 6 was selected as
a baseline. The particular case for which the cfl = 0.4 using 4 levels was compared against
several simulations using MACSio for which the data growth parameter was calibrated to obtain
a non-linear kernel trace for the generated output described in Fig. 3. The initial data size was
calibrated against the simulated “expected” output size multiplied by a correction factor due to its
approximate nature in MACSio as a result of constraints involved in creating a valid mesh topology.
As a result, a first order approximation for MACSio’s part size factor in Listing 1 was estimated
as:

12

0 10 20 30 40 50 60
0

1.0×1010
2.0×1010
3.0×1010

0 10 20 30 40 50 60
0

1.0×107
2.0×107
3.0×107
4.0×107
5.0×107
6.0×107

0 10 20 30 40 50 60
0

5.00×107
1.00×108
1.50×108
2.00×108

0 10 20 30 40 50 60
0

1.0×108
2.0×108
3.0×108
4.0×108
5.0×108
6.0×108

Figure 8: Output generation at each timestep per compute task (taskID) for 4 mesh levels in case27,
for 1, 024× 1, 024 L0 mesh for the AMReX Castro Sedov baseline.

part size = f
8NxNy

nprocs
[bytes] (3)

f ≈ [23− 25]

where f is a correction factor due to the difference in nature of the MACSio json-based output
and AMReX output file formats. The value of 8 accounts for the extra bytes in the double precision
setup of the Castro executable. The results show that the empirical factor f for the Sedov cases
is somewhere around 23 and 25, although this value might need to be reevaluated if the number
of output fields or a different set of problems is used. Selecting a precise value for f in Eq. (3)
depends on the focus of the approximation as a variational problem with two parameters. The
latter is illustrated in Fig. 9 for which the “best” data growth factor is optimized. It can be seen
that keeping the initial data size in Eq. (3) fixed would lead to a single parameter optimization
problem, which after a few runs shows that MACSio can provide a “kernel” approximation that
is “close enough” to the output sizes generated with the AMReX Castro Sedov case. The final
solution for data growth = 1.013075 initially deviates from the simulation output sizes, however it
becomes close to the correct value as the value as time steps increase, thus providing enough non-
linear effect to model a similar behavior. As a result, if the intention is to model data workloads
at each time step of the simulation, MACSio provides a simple interface to simulate “static” loads
that can be a starting point for “dynamic” studies of more random system behaviors.

The proposed model in Eq. (3) is evaluated for the different cases shown in Fig. 5 by running
MACSio several times while fine tuning the data growth parameter to approximate the behavior
of the measured data outputs from the Sedov case. To illustrate the validity of the MACSio model,

13

0 50 100 150 200

7.500×107

1.000×108

1.250×108

1.500×108

1.750×108

Figure 9: Modeling calibration for timestep outputs for the Sedov case4, cfl = 0.4, 4 AMR lev-
els using MACSio non-linear kernel approach. Each curve represents a step in the convergence
calibration.

Fig. 10 shows the resulting output sizes from the pivot simulation Sedov case (case4) and the
comparison against the proposed MACsio model. It can be seen that after setting the initial data
size from Eq. (3) to a constant value = 1550000 ≈ 23.65 × 5122 × 8/32 the data growth becomes
a function of the maximum number of levels and the CFL number. Still, this variation is smooth
and choosing a small data growth value below 1.02 (or 2%) based on CFL interpolation from these
results, can be a good initial guess if further minimization is required depending on use-case (e.g.
machine learning models, quick I/O evaluation, etc.).

Last, but not least we select the large case from Table 1 running on 64 nodes of the Summit
supercomputer for a 8192×8192 L0 mesh. From Fig. 5, it can be seen that as cases become large the
non-linearity introduced at the more refined levels becomes less dominant. Nevertheless, while the
variation might be less smooth due to a natural reduction in the number of output steps for large
scale runs, MACSio can still provide a first-order kernel approximation using the present model.
This is illustrated in Fig. 11 in which the variation of the output at large scales is less smooth and
a sudden jump in output size occurs as convergence of the solution is approached. MACSio can
generate kernels that are in the vicinity of these values, while not necessarily providing an exact
proxy for the observed non-smooth behavior. We argue that the simplicity of proxy applications, as
shown with MACSio for the present study, still provides a reasonable trade-off between complexity
and accuracy for modeling desired output workload characteristic at different scales for AMReX
based simulations.

2.3 Conclusions

The data output characteristics of a AMReX-based Castro application under a variety of input
conditions are analyzed and modeled using MACSio as a potential candidate for a simple “kernel”-
based proxy I/O application. Results show that MACSio, in its current state of outputting a file
for each rank and step, can provide proxy I/O capabilities that are able to model “per-step” and
“homogeneous per-rank” output sizes of the Sedov hydrodynamic baseline case in AMReX-Castro

14

0 50 100 150 200

1.00×108

1.50×108

2.00×108

2.50×108

0 50 100 150 200
7.00×107

8.00×107

9.00×107

1.00×108

1.10×108

0 50 100 150 200

7.00×107

7.50×107

8.00×107

8.50×107

9.00×107

Figure 10: Comparison of the baseline Sedov case4 simulation outputs at each time step for different
CFL numbers 0.3 (cfl3) and 0.6 (cfl6) and maximum number of mesh levels (maxl=2,4) against the
proposed MACSio model.

0 10 20 30 40 50

1.84100×1010

1.84110×1010

1.84120×1010

1.84130×1010

1.84140×1010

1.84150×1010

1.84160×1010

Figure 11: Comparison of a large L0 mesh = 8192 × 8192 Sedov non-smooth simulation output
against the proposed MACSio kernel model.

running on the Summit supercomputer at different scales. In addition, a calibration methodology
and an analytical model are provided that relate AMReX Castro inputs with those of MACSio,
thus resulting in a lightweight proxy approach to conduct initial studies of AMReX I/O modeled
characteristics without having to run a full simulation in parameterized studies. The latter simple

15

analytical model becomes useful as storage systems evolve, along with the need to understand the
co-design trade-offs when producing data at scale using AMR-based simulations. Furthermore, this
simplified proxy “kernel”-based approach can be a good initial candidate for follow up studies on
predictive I/O sizes, as well as dynamic random system characteristics that could potentially benefit
from machine-learning approaches as more data becomes available. Since the ultimate goal is to
improve the understanding of AMR output generation, proxy applications combined with simple
modeling approaches can be a powerful predictive tool for autotuning more complex parallel I/O
workload patterns in current pre and upcoming exascale supercomputing platforms. The latter
autotuning aspect is something we would like to explore in subsequent studies.

16

3 Definition of More Accurate Performance Counter Groups

The work presented here satisfies the ADCD504-58 quantitative assessment milestone:
Re-define the performance counter groups for contemporary Intel and IBM platforms to better match
specific hardware components and to better align across platforms (make cross-platform comparison
more accurate), update extraction, processing, and automated data checking tools, then re-collect
full data sets on the two platforms based on the new groups and repeat the similarity analysis.

Performance monitoring units are designed by vendors to be platform-specific. For example,
some platforms support 4 registers for accumulating results and some support 6, and they all
support different events with different event names, although often these events are semantically
similar (e.g., cache miss events). Even within successive vendor platforms, the number of available
registers and event names often change.

For the work that we’ve done on similarity analysis, we collect a performance vector comprising
all of the valid performance events on each system of interest. For the Intel Skylake platform, this is
around 500 total events (prior to event selection of important features). Because we want to under-
stand how similarity and behavior of proxy/parent application pairs changes across architectures,
we need to collect data that count similar events on each system architecture. To accomplish this,
we inspected documentation, did some high-level validation, and from this, grouped events into pri-
mary and secondary categories for a particular architectural component. Examples of architectural
components include L1, L2, and L3 cache, pipeline, and memory. Each primary category comprises
events that represent behavior that is somewhat similar across platforms. Therefore, we only use
component primary categories in our similarity analysis to determine if proxy/parent similarity
remains constant across architectures. Secondary categories comprise architecture-specific events.
These event sets can be used to understand proxy/parent similarity for a particular component on
a specific system, but are not used when looking at similarity across different system architectures.
This grouping of events into sets that pertain to specific architectural components is not perfect,
but represents a first attempt to ensure a fairer comparison across very different architectures, such
as the IBM Power9 and Intel’s Skylake.

Figure 12: Cosine Similarity, Intel Skylake, Full
Execution

Figure 13: Cosine Similarity, Intel Skylake, L1
Cache

17

We categorize events according to architectural component because we want to understand
where (i.e., for which component) a proxy exhibits behavioral similarity with a parent application.
For example, a proxy might diverge from a parent in its total execution behavior, but its cache
behavior may be similar, indicating that the divergent behavior is generated by a component other
than cache. In this case, the proxy may be a good cache proxy of its parent, and can, therefore, be
used in co-design efforts that are examining new cache architectures. Figure 12 shows similarity in
angle (degrees) between proxy/parent pairs and a group of other applications (a mix of benchmarks,
applications, and proxies) using the cosine similarity method on an Intel Skylake platform. The
diagonal, which shows all 0 degrees, is self-similarity of an application with itself. The highlighted
black boxes show the similarity between proxy/parent pairs. Note that XSBench and openmc
are most divergent, with an angle of 61◦ between them that indicates that their overall behavior
for their entire execution at the underlying hardware level is quite different. However, looking at
Figure 13, which is the similarity of proxy/parent and other applications for L1 cache behavior, we
see that XSBench and openmc have fairly similar cache behavior. In this case, XSBench can be
used as a proxy for the L1 cache behavior of openmc. Their divergent behavior must be realized in
some other component of the architecture.

We list all of the component groups and their events for the IBM Power9 and Intel Skylake
systems here: https://github.com/sandialabs/proxy-parent-data/. We include some examples of
component groups in Appendix A.

After completing re-grouping of performance counter events to better accommodate cross-
system proxy/parent app similarity behavior, we updated all of our tooling infrastructure to reflect
these new event sets. These include collection tools and data processing and analysis tools. We are
currently working through the process to publicly release these tools on our Sandia organizational
external github site.

We re-collected all of the data needed for proxy/parent pair similarity analysis on an IBM
Power9 and Intel Skylake platform. In the FY21 report on quantitative assessment [33], we pre-
sented a methodology to compare proxy app to parent behavior for quantifying proxy fidelity using
cosine similarity. We submitted a paper to ISC2021 based on this work. This paper was rejected
primarily because the reviewers were unsure of the accuracy of the results. We subsequently per-
formed much work to validate that the results returned by cosine similarity analysis are indeed
accurate. Because we do not know a priori if the proxy application uses the underlying hardware
in a similar manner compared to the parent application, we cannot know with absolute confidence
that the similarity results are valid. We have no ground truth in this case, although we do have
intuition through code and algorithm inspection as to which proxies should be more or less similar
to their respective parents. Since we have no ground truth, we decided to apply many different
ML-based, unsupervised (as is cosine similarity) algorithms to proxy/parent behavior comparison
in an attempt to quantify the accuracy of cosine similarity. We also added some standard HPC
benchmarks to our similarity analysis to serve as baseline measurements. Note that we did the
exploration of similarity algorithms, added HPC benchmarks, and performed feature extraction on
the Intel platform only. We describe this work below, much of which has also been submitted in a
paper to SC22, but we also include the new cosine similarity analysis (based on new performance
counter groups) for both the IBM Power9 and Intel Skylake platforms.

3.1 Comparison of Similarity Algorithms for Quantifying Proxy Application
Fidelity

The three main research questions we address are: 1) how closely proxy behavior on a system
represents parent behavior, 2) how similar proxies are to each other so that a co-design or procure-

18

ment suite does not suffer from redundancy, and, 3) how to identify gaps, where there is no proxy
that represents the behavior of a parent application. For this purpose, we introduce SimEngine
to determine the similarity between proxy and parent applications. We generalize the engine for
more comprehensive usage in the HPC area, as well as implementing several similarity algorithms.
We demonstrate how to choose the best algorithm for a given (our) dataset through algorithmic
comparison. We do this primarily because in many contexts, there is no ground truth (i.e.,, we
do not know a priori which proxies are, or should be, representative of their parents’ behavior).
By comparing results from different similarity algorithms, we get best-case validation that the
observations are accurate. SimEngine also includes algorithms to facilitate feature selection, as
minimizing the number of features is very important to reduce the data collected and thus lower
the number of application runs.

With the help of the quantitative similarity measurement we have developed in SimEngine,
users are guided to choose proper proxy applications for particular uses. Besides quantifying fidelity
of proxy applications, similarity measurement approaches in SimEngine can also be applied to
various HPC problems, such as compiler optimization, code refactoring, and application input
sensitivity.

3.2 SimEngine

To determine how similar proxy and parent applications behave in terms of resource utilization
such as computation and memory, we explore the use of several ML similarity techniques, which
are all unsupervised. These techniques work differently, making it difficult to determine which one
reveals the real relationship. Therefore, we create SimEngine to interpret the level of agreement
between these techniques and converge upon a measure of proxy fidelity.

We collect hardware performance counters from several proxy applications, parent applications,
and benchmarks to provide a comprehensive collection of informational measurements that reveal
application execution resource fingerprints to determine similarity. Figure 14 shows the workflow
of SimEngine, where we use Lightweight Distributed Metric Service (LDMS) [7] as the data
collection framework to collect PAPI hardware performance counters from HPC applications. This
data is processed (see Section 3.5.4) and then input to the feature selection layer as a matrix X
that has n rows of application vectors x1, . . . , xn and features f1, . . . , fd as the columns.

During feature selection, we rank the features by calculating importance scores and selecting the
important k features using a correlation filter. The matrix X ′, which has k features as the columns,
preserves the similarity structure of the matrix X. Finally, using the selected important features,
we produce similarity matrices to compare the similarity between applications, and quantify the
fidelity of proxy and parent applications.

3.3 Similarity and Distance

Evaluating the similarity between proxy and parents is one of the main goals of our work. For each
application, we sample, by the second, the accumulated hardware counters, for the whole execution.
Then we average the last 5 seconds of the application execution for each event across ranks. Thus,
we get an application vector xi, that contains a series of averaged hardware event counters (i.e.,
xik). We define two applications as similar if the vectors that represent the applications are a
short distance apart, which, in many classification tasks, corresponds to the vectors belonging to
the same class. After calculating the pairwise distance between each application pair, we get a
similarity matrix. Finally, we compare the results of four typical similarity metrics, introduced
below, and choose the metric that most accurately correlates known proxy/parent pairs.

19

Figure 14: SimEngine Architecture

3.3.1 Cosine Similarity

Cosine similarity compares the angle between vectors in an inner product space, where the inner
product can be conceptualized as the projection of one vector xi in the direction of the other
vector xj . The calculation relies on two complementary definitions (algebraic and geometric) for
computing the inner product:

• Algebraic Inner Product: xi · xj =
∑d

k=1 xikxjk

• Geometric Inner Product: xi · xj = ‖xi‖‖yi‖ cos θ

• Cosine Similarity:

cos(θ) =

∑d
k=1 xikxjk
‖xi‖‖xj‖

(4)

The cosine varies from 1.0 (identical vector direction) to 0.0 (orthogonal vectors), and the degree θ
varies from 0◦ (similar) to 90◦ (dissimilar). If two applications have similar behaviors then we are
expecting their cosine similarity angle to be closer to 0◦.

3.3.2 Jensen-Shannon (JS) Divergence

Instead of comparing two vectors, we can normalize each vector and think of it as a probability
distribution (each event turns into a probability), and then compare the two distributions. JS
divergence [14] measures the distance between two probability distributions P and Q. JS divergence
is a generalization of Kullback–Leibler (KL) divergence [23], the relative entropy from distributions
Q to P , i.e., the expectation of the logarithmic difference between the probability distributions Q
and P .

KL(P |Q) =
∑
x

P (x) log
P (x)

Q(x)

= −
∑
x

P (x) logQ(x) +
∑
x

P (x) logP (x)

= cross entropy – entropy

KL divergence is asymmetric and has no upper bound. Unlike KL divergence, JS divergence is
symmetric and returns a value between 0 and 1, where 0 is similar and 1 is divergent. JS divergence

20

is defined as

JS(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M) (5)

where M = 1
2(P +Q).

3.3.3 Wasserstein Distance

Wasserstein distance [35] can be interpreted as the minimum “cost” of transforming a probability
distribution P into distribution Q, where “cost” is measured as the amount of distribution weight
that must be moved, times the distance it has to be moved [4]. Unlike other statistical distances
like JS divergence, Wasserstein distance multiplies the probability distribution and the distance,
thus the order of the events matters. Since Wasserstein distance does not require both measures
to be in the same probability space (i.e., two vectors may have different lengths), it can be used
to compare application performance across platforms that support a different number of hardware
event counts. The pth Wasserstein distance is defined as

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
‖x− y‖pdJ(x, y)

)1/p

(6)

, where J (P,Q) denotes all joint distributions J for (X,Y) that have marginals P and Q. We use
the first Wasserstein distance (p = 1) between two 1-dimensional distributions, which is also known
as earth mover distance, to determine similarity. Wasserstein distance does not have an upper
bound; 0 indicates similarity (equivalence), while increasing values indicate growing divergence.

3.3.4 Mahalanobis Distance

Mahalanobis distance [31] is an effective multivariate distance metric that measures the distance
between a point (vector) and a distribution, or two points from the same distribution. The Maha-
lanobis distance between two vectors xi and xj from the same distribution is defined as

dM (xi, xj) =
√

(xi − xj)TS−1(xi − xj) (7)

, where S is the covariance matrix of the data set. Geometrically, it transforms the data by whiten-
ing and normalizing the covariance, and computes the Euclidean distance for the transformed
data. Since the Mahalanobis distance accounts for the variance of each variable and the covari-
ance between variables, it is used in areas such as multivariate anomaly detection and imbalanced
classification. Note that the Mahalanobis distance requires more samples than features in order
to calculate the covariance matrix. Thus, we reduce dimensionality with principal components
analysis (PCA) before applying Mahalanobis distance. Mahalanobis distance also does not have
an upper bound; here, 0 indicates similarity (equivalence), while increasing values indicate growing
divergence.

3.4 Feature Selection

A large number of hardware performance counter events are available on most HPC architectures,
making it difficult to identify a comprehensive but minimal set. Thus, we exhaustively collect all
the events available on the Intel Skylake platform (500 total events) for each application. However,
our aim is to reduce irrelevant features, since these features may add noise, reduce model accuracy,
increase latency and storage overhead, or extend the amount of data processing. Therefore, we

21

have to find a suitable feature selection algorithm that is simple and efficient, in order to speed
up our engine, find a concise event subset of uncorrelated features, simplify the data collection,
and enable cross-platform comparison. There are two components in the feature selection layer in
SimEngine: feature score, which is used to rank the important features, and the correlation filter,
which is used to remove the correlated features. Again note that we perform feature selection for
the Intel platform only and will perform this for the IBM Power9 feature data as future work.

3.4.1 Feature Score

Consider a data matrix X that has n rows of samples x1, ..., xn with d features f1, ...fd. Our goal
is to find the subset of k important features that preserve the similarity structure of the matrix X.

Since we are mainly interested in maintaining the similarity relationship between the proxy/par-
ent application pairs, neighbor embedding is the perfect unsupervised method to reduce our feature
set. We choose a graph-based feature ranking technology called Laplacian score [18] to compute
the importance of features. Laplacian score builds a nearest neighbor graph for application points
and seeks those features that respect local graph structure. In our case, these features help preserve
the neighbor similarity between proxy and parent applications.

We express the Laplacian score of the rth feature as:

Lr =
f̃Tr Lf̃r

f̃Tr f̃r
(8)

, or in a more understandable way:

Lr =
Σij (fri − frj)2 Sij

Var (fr)
(9)

, where fr is the rth feature, and Sij is the weight matrix.

Sij = e−
‖xi−xj‖2

2 (10)

An element Sij will only have a nonzero value when i and j are neighbors, otherwise the value
of that entry is zero. The denominator in Eqn. 9 indicates the variance of the rth feature; larger
values correlate to more information represented. The numerator indicates the sum of feature
value differences within the points’ neighbors; here, the smaller the Laplacian score is, the more
important the feature is. Finally, we get the ranked features sorted by Laplacian score.

Since features are evaluated separately in the Laplacian score, if we select features with the
smallest Laplacian score, some correlated features may be included. To further reduce the important
feature set, we introduce the correlation filter.

3.4.2 Correlation Filter

When a group of features are highly correlated, we only need to include one in our selection. A
broadly used correlation measure is the Pearson correlation coefficient (PCC). PCC measures the
linear correlation between two variables fi, fj .

ρfi,fj =
cov(fi, fj)

σfiσfj
(11)

where cov is the covariance and σfi is the standard deviation of fi. PCC has a value between +1
and -1, where +1 is a total positive linear correlation, 0 is no linear correlation, and -1 is a total

22

negative linear correlation. We choose a PCC threshold of 0.9 because we want to keep a reasonable
number of important features while removing those with strong correlation.

We calculate the pairwise PCC for all ranked features and extract features sequentially from
the ranked feature set and add them to our important feature subset. Each time we select one
feature, we remove the redundant features with PCC > 0.9 or < −0.9 from the remaining features.
We stop collecting features when there are no more features in the feature pool.

Note that the PCC can evaluate only a linear relationship between two continuous variables;
we will investigate more correlation methods in future work.

3.5 Experimental Platform

In this section, we present our methodology for collecting data and how we use that data to perform
similarity analysis using SimEngine. We use Intel Skylake and IBM Power9 production HPC
systems to collect data on 21 proxy and parent applications that span several scientific domains.
We also collect data on several standard HPC benchmarks and use these in our analysis to provide
a baseline for aiding in understanding the results.

3.5.1 Application Suite

Of the applications used in this work, some are proxy/parent pairs and some are proxies or parents
that are not paired. We also include several standard HPC benchmarks. Not all applications we
use are proxy/parent pairs because some proxies have export-controlled parents for which data
cannot be publicly released. Also, Castro is the parent of a proxy called Thornado [13], but at this
point, we are not using Thornado because of I/O issues within the code that caused problems with
data collection. Per developer documentation, all of the proxy/parent pairs in our suite comprise
proxies that are intended to represent the computation, communication, and memory behavior of
their respective parent.

We use the vendor-specific compiler on each platform to compile all of the applications except
OpenMC. On the Intel Skylake system, we used icc 20.0.2.254 and OpenMPI 4.0.3, on the IBM
Power9 system we used xl V16.1.1 with IBM Spectrum MPI. OpenMC required us to use GNU
compilers, 8.3.1 on Skylake and 8.2.1 on Power9.

For each proxy/parent pair, we use the same input problem and/or parameters where possible.
In cases where we cannot run the same problem, we use the closest matching problem available
and we size both proxy and parent application problems in all cases to use about 50% of the
available memory. Table 4 contains all of the proxy/parent pairs and other applications and
the specific versions that we use in this work. If a date is given, it is the latest code available
in the repository at that date. The input that we use for all of the applications can be found at
https://github.com/sandialabs/proxy-parent-data/tree/main/input files.

3.5.2 System Platforms

We want to look at proxy/parent behavior similarity on significantly different platforms, so we
chose an Intel Skylake and an IBM Power9 system.

Some basic characteristics of these systems are shown in Table 5. The IBM platform does
implement graphics processing units (GPUs) on each socket. However, since this work focuses
on CPU behavior, we do not include these characteristics in Table 5. The Intel system runs the
RHEL7.8 operating system (OS); RHEL7.6 OS runs on the IBM system.

From Table 5 these architectures seem relatively similar. The Intel architecture is a CISC
(complex instructions set computer) and the IBM is a RISC (reduced instruction set computer)

23

Table 4: Proxy/Parent version information

Proxy Version Parent Version

AMG2013 [19] 2013 0 N/A N/A
N/A N/A Castro [8] 20.07
ExaMiniMD [38] 1.0 LAMMPS [30] 17 Aug 2017
Laghos [12] 3.0 N/A N/A
miniQMC [32] 0.4 QMCPACK [21] 3.8
miniVite [15] 1.0 Vite [16] 30 Sept 2020
Nekbone [20] 3.1 Nek5000 [28] 19.0
PENNANT [2] 0.9 N/A N/A
PICSARlite [3] 16 July 2020 PICSAR [40] 16 July 2020
SNAP [5] 1.09 N/A N/A
SW4lite [13] 2.0 SW4 [29] 2.0
SWFFT [13] 1.0 HACC [17] 1.0
XSBench [39] 19.0 OpenMC [34] 0.11.0
HPCG benchmark [6] 3.1 N/A N/A
HPCC benchmark [1] 1.5.0 N/A N/A

Table 5: Hardware Characteristics of Intel Skylake and IBM Power9 Platforms

Component Skylake Power9

L1 data cache (private) 32 KB, 8-way same

L1 instr. cache (private) 32 KB, 8-way same

L2 cache 1 MB, 16-way 512KB, 8-way
per core per core pair

L3 cache 24.75MB, 11 way 120MB, 20-way
(shared) 12, 10MB banks

Memory 192 GB 256GB
(per node) DDR4-2666 DDR4-2667

Cores/threads 18/36 24/48

Sockets/node 2 2

Total nodes 1488 54

Interconnect Omnipath Mellanox EDR Infiniband

Max Memory BW (per processor) 20GB/sec 170 GB/sec

Memory channels (per socket) 6 8

which is fundamentally different. However, this difference does not manifest in a fundamental
difference in the execution pipeline. They have similar pipeline depths, numbers of execution units,
and issue widths. The differences are primarily in the memory subsystem and in SIMD width. The
Skylake processor supports up to 512-bit SIMD where the Power9 only supports 128-bit. For about
half of the applications we observed similar execution times on the two platforms. For the other
applications, we observed significant slowdowns on the IBM architecture. We believe (and IBM
agreed) that these applications benefit from the wide SIMD on Intel Skylake and could not attain
the same performance on Power9 given the 128-bit wide SIMD support.

We run all of our applications in MPI-only mode and the collection runs are done using 128
ranks, one rank per core, on four nodes. We chose this configuration because it is small enough
to feasibly run large numbers of experiments relatively quickly, yet it is large enough to capture
important communication behavior.

3.5.3 Data Collection

We use LDMS [7] as the collection infrastructure in all of our experiments. LDMS implements
a plug-in architecture, where plug-ins are often engineered to collect data for a particular com-

24

ponent or piece of the system. With LDMS, we use the Performance Application Programming
Interface (PAPI) [37] sampler, which implements the PAPI API within the sampler to connect
to every process (rank) in each application, in order to collect node related performance counter
data. We carefully examined all of the available performance events on our hardware platform and
functionally tested them to ensure that at a minimum, plausible data was returned for each event.
We eliminated events that were returning no data or unstable (i.e., vastly varying) data across
application runs. Finally, we collected more than 500 and more than 700 hardware events for each
application on the Intel Skylake and IBM Power9 platforms, respectively.

Several runs are required to collect the complete set of data since the hardware has limited
performance counter registers, and if software multiplexing of these resources is too extreme, ac-
curacy can be lost. Although the number of events collected per run is application specific (i.e.,,
dependent on application behavior), we experimentally determined that if the number of events
collected per experiment was 35 or less, the effect on accuracy was negligible.

We collect the data in subgroups according to the event categories suggested by experts.
Thus, we have the following groups: Branch, DecodeIssue Pipeline, Dispatch Pipeline, Execu-
tion Pipeline, Frontend, Instruction Cache, Instruction Mix, L1 D Cache, L2 D Cache, L3 D Cache,
Memory Pipeline, Misc, Power, Retirement Pipeline, and Memory. Because we also aim to under-
stand the ways in which a proxy is or is not a good model of the parent in terms of node components
such as cache, TLB, branch predictor, and pipeline, we further grouped these subgroups into ar-
chitectural concept groups, including cache, branch prediction, pipeline, instruction mix, memory,
virtual memory, and others.

3.5.4 Data Pre-Processing

To account for performance variation and any performance counter variation, we run each event
subgroup 5 times for each application, resulting in over 3000 data-collection runs. Further, we
collect data from each application process (i.e.,, each MPI rank). For similarity analysis, we need
a single vector for each application. Therefore, we (1) compute the average for each event across
all ranks for each of the five runs, (2) compute the average for each event for each of the five runs,
and finally (3) normalize the event counts by cycles executed. The result is a vector of length 500
or 700 (Intel or IBM) for each application, where each element is event count/CPU cycles.

Because irrelevant (noisy) features can hurt the performance of the cluster learning for unsuper-
vised feature selection [26], we remove these features before they are ranked. Hardware events in
our collection platform have a prefix (Table 8), which allows us to filter some events using domain
knowledge. We observe, for instance on the Intel platform, that a large number of hardware events
with the prefix ‘OFFCORE RESPONSE’ always show extremely small values with little variance.
We calculate the absolute degree difference, entry by entry, between cosine similarity matrices with
or without these ‘OFFCORE RESPONSE’ features. The sum of absolute difference is only 1.4
compared to 22078, which is the sum of all the entries in the cosine similarity matrix with all
features. From this, we propose

Observation 1: Events that begin with the prefix ‘OFFCORE RESPONSE’ are irrelevant in
similarity analysis.

After excluding these features with the prefix ‘OFFCORE RESPONSE’, we also eliminate 10
additional features on the Intel platform that do not have value for some applications. Therefore,
prior to ML-based feature selection, the number of features is already reduced to 202.

Much feature selection work considers centralization (zero mean), normalization (norm 2 equals
1), or standardization (variance equals 1) as preprocessing steps. Because each feature in our data

25

has an explicit physical meaning (hardware event counts per CPU cycle), if we preprocess the data
as mentioned above, the feature scales and the relationship between features will be lost. Therefore,
we keep the data scales as they are. Note that feature selection has only been done on the Intel
platform and is presented in Section 4. Feature selection on the IBM platform is future work.
Therefore, we show similarity results using all features for both platforms.

3.6 Results

Here we present the results that show the fidelity of the proxy applications as compared to their
respective parents. We first present a comparison between similarity algorithms using data from
the Intel platform only. We use the similarity algorithms outlined in Section 3.3 and evaluate the
accuracy of the resultant proxy/parent pairs. We then present cosine similarity results for both
platforms, followed by a presentation of some of the results for component subgroups.

3.6.1 Similarity Matrix Comparison

Since the similarity matrix is symmetric on the diagonal, we use the lower triangular heatmap
(Figures 15, 16, 17, and 18) to visualize the similarity. The diagonal entries are zero because they
indicate the distances between the applications and themselves. We adjust the scale of value in each
figure to be within the same range to make them comparable. The spectrum colors that represent
similarity are from a standard colormap, where dark green is highly similar and dark red is highly
dissimilar. All proxies that have parents are listed first on the axes (top on y; left on x) and each
parent is listed directly after its corresponding proxy. Along the diagonal, eight 2×2 black border
blocks circle the relationship between proxy and parent application pairs. One would expect to see
the lower left of these blocks to be dark green, which shows a high similarity between proxy and
parent. The nine miscellaneous applications (either a proxy with no parent or a parent with no
proxy) are listed at the bottom on the y-axis and the right on the x-axis.

In Figures 15, 16, 17, and 18, we see that, generally, the four distance metrics we evaluate
return similar correlations. Take for example Figure 15 which uses cosine similarity: PICSARlite
and PICSAR, SW4lite and SW4, Nek5000 and Nekbone, and ExaMiniMD and LAMMPS, are
highly similar proxy/parent application pairs. QMCPack and MiniQMC, and SWFFT and HACC,
show good similarity. While these six pairs have similar behaviors, the other two pairs show some
behavior gaps: miniVite and Vite are moderately similar, with an angle of 35◦ between them, and
XSBench and OpenMC are highly dissimilar, with an angle of 60◦ between them. In this case,
this is probably because of the difference in complexity between the parent and proxy; XSBench
only performs the cross-section lookup portion of Monte Carlo neutron transport, which is a highly
data-intensive kernel, whereas OpenMC implements the full neutron transport code so, likely has
more opportunity to hide poor cache/memory behavior with other computation. The unpaired
proxy applications (amg2013, Castro, Laghos, pennant, and snap) show relative similarity to each
other, and note that many of these are closer in behavior to SWFFT than is HACC, its parent,
for many of the similarity algorithms. The other four HPC benchmarks are not similar to each
other because they aim to measure totally different memory or data patterns. But note that
for all four algorithms, the behavior of hpcc-random generally most closely matches the behavior
of all of our applications, which is expected since many of them are characterized by random
access memory behavior. Similarly, all four algorithms show that hpcc-streams is most divergent
in behavior from all of the applications, which is also expected. This is likely because it is a
synthetic benchmark program that measures sustainable memory bandwidth and the corresponding
computational rate for a simple vector kernel, thus, it does not behave like standard scientific

26

Figure 15: Cosine Similarity Figure 16: JS divergence (Values are multiplied
by 100)

Figure 17: Wasserstein distance (Values are
multiplied by 1000)

Figure 18: Mahalanobis distance (Values are
multiplied by 10)

27

applications with random memory access and a much heavier computational workload. hpcg is
designed to exercise computational and data access patterns that more closely match a different
and broader set of important applications. In our suite, only Nekbone and Nek5000 are similar to
hpcg. Another thing to note from Figure 15 is that application pairs QMCPack and MiniQMC are
similar to one another but very different from other applications. XSBench, Nekbone, Nek5000,
PICSARlite, and PICSAR are also outliers in that their behavior shows significant differences
compared to most other applications.

We also notice that there is some diversity when applying these four similarity algorithms.
When looking at the dark red areas, applications hpcc streams and hpcg are highly dissimilar to
other applications in terms of cosine similarity, JS divergence, and Mahalanobis distance, while not
that dissimilar in Wasserstein distance. This may be due to Wasserstein distance being impacted
by the feature order in the vector. If the order of the events in the vector changes, the Wasserstein
distance would also change. For example, if the events that have divergent behavior are located
far away in the vectors, the Wasserstein distance becomes larger. The application hpcc degemm is
extremely different from other applications in Mahalanobis distance but shows no obvious differ-
ences in other similarity algorithms. This may be because of the whitening process in Mahalanobis
distance. QMCPack and MiniQMC diverge more in Wasserstein distance and Mahalanobis dis-
tance compared to the other two methods, and the differences mainly come from the cache and
pipeline subgroups, which we will discuss in Sec 3.7. A significant refactoring effort has gone into
QMCPack to improve its memory behavior and accuracy [21], but this has not been implemented
in miniQMC. Overall, cosine similarity agrees most closely with JS divergence with respect to
similarity/divergence results.

Observation 2: Similar proxy/parent application pairs remain similar no matter what simi-
larity algorithm is used, while dissimilarities differ depending on what algorithm is used.

Since these distance methods show similar results for similar pairs, and the run-time difference
of each method is negligible, we select cosine similarity for validating proxy/parent pairs due to its
simplicity, performance, and ease of interpretability by geometric angle.

3.7 Cosine Similarity in Intel and IBM Platforms

The milestone work presented in this section was to re-group performance event counts to more
closely represent the various processor component behaviors. In prior work, we had grouped events
into component groups, but those groups were ill-defined and we had many events that were clearly
in incorrect groups. We improved these issues, then performed the study that examined various sim-
ilarity algorithms to determine which we should really use. This study concluded that because two
out of four of the algorithms had a high level of agreement (cosine similarity and Jensen-Shannon
divergence), we should use cosine similarity because its interpretation is intuitively simple. This sec-
tion presents the cross-platform cosine similarity study that we did after re-grouping performance
count events, which is the last part of the milestone. Results of this study are shown below.

We use the experimental platform as presented in Section 3.5. Figures 19 and 20 show the cosine
similarity results for the Intel and IBM platforms, respectively, using the entire execution vector
(i.e., all valid performance counter events). We see that the proxy/parent pair relationships remain
essentially the same, with the exception that miniQMC and QMCPACK are more divergent on
the IBM system. The difference in overall similarity is starkly noticeable, with a larger proportion
of green in the plot of Figure 20. In Figure 20, we see that miniQMC and XSBench are outliers,
showing little similarity with the rest of the apps. In contrast, on the Intel figure, we see more outlier

28

Figure 19: Cosine Similarity, Intel Skylake Figure 20: Cosine Similarity, IBM Power9

applications–QMCPack, Nekbone, Nek5000, hpcc streams, and hpcg in addition to miniQMC and
XSBench. Why? We believe that the answer is at least partially attributed to the difference in cache
and memory subsystems in these two platforms. The Intel system is characterized by a smaller, more
bandwidth-constrained memory subsystem in general. If any of the applications are constrained
by these resources, there will be more activity or behavior observed in those components. And
because every application probably strains these resources differently, it seems this might generate
more divergent behavior. If we look at data from some of the memory subsystem component groups,
we see this more clearly.

Figure 21: Cosine Similarity, Intel Skylake, L2
Cache

Figure 22: Cosine Similarity, IBM Power9, L2
Cache

Figures 21 and 22 show the cosine similarity of the L2 cache behavior for the Intel and IBM sys-

29

tems, respectively. In the Intel L2 Cache behavior plot, we see more divergence in Nekbone/Nek5000
and hpcc streams and hpcg. QMCPack’s L2 cache behavior is not really an outlier here, but rather
is fairly similar to most of the cache behavior in the other applications. However, if you look at the
L1 data cache similarity of QMCPACK on the Intel system in Figure 25, we see that its behavior,
as well as miniQMC’s, is quite distinct from the other applications. In the IBM system, Figure 22
looks similar to Figure 20, where the whole performance vector is used in the analysis, except
hpcc streams is not as divergent from all the other apps.

On the Intel platform, we also see QMCPack’s outlying behavior in the pipeline. Figures 23 and
24 show the cosine similarity for the Dispatch and Execution stages of the pipeline, respectively.

Figure 23: Cosine Similarity, Intel Skylake, Dis-
patch Pipeline

Figure 24: Cosine Similarity, Intel Skylake, Ex-
ecution Pipeline

QMCPack’s behavior really diverges from that of other applications; Nekbone/Nek5000 also outlies
more from the other apps in its dispatch behavior.

On the IBM system, hpcc streams behavior is distinct from other apps primarily in the memory
stage of the pipeline, specifically in the LSU (load/store unit). We see this in Figure 26. Although
we do not include all of the processor component data here, upon inspection of this data, this is
likely what generates the distinct behavior for hpcc streams in the overall cosine similarity analysis
of Figure 20. This makes sense since this benchmark saturates memory bandwidth, and this should
be observable through the behavior in the LSU.

3.8 Discussion and Future Work

Our results indicate, surprisingly, that the particularities of the similarity algorithms have less
impact than predicted on the likelihood of correlating parent/proxy pairs. Since we use ECP pairs,
we expect that this is a general result, but we cannot rule out the possibility that some domains
will not have clearly separable parent/proxy relationships.

Run-time variance is inevitable in HPC. On the one hand, to collect the complete set of data,
we run each application multiple times. Minor run-time differences occur among multiple runs. On
the other hand, different applications vary in run-time, e.g., most parent applications have longer
run-time than their corresponding proxy applications. Since our current analysis is based on the
final accumulated average of each hardware event count for each application, we temporarily do not

30

Figure 25: Cosine Similarity, Intel Skylake, L1
Dcache

Figure 26: Cosine Similarity, IBM Power9,
Memory Pipeline Stage (LSU)

take these run-time differences into account. However, if we want to keep the time phases for each
application, we need to consider aligned data. Currently, we have implemented run-time alignment
for each application with a weighted index for each run, but aligned data could be used for future
time phase comparison. In the future, we will also evaluate important features on more platforms,
including the IBM Power9 in particular.

31

4 Data Processing for Input to ML Stage

The work presented below satisfies the ADCD504-35 quantitative assessment milestone:
This work involves statistical and ML methods specifically to reduce the set of collected performance
counters used in cosine similarity analysis. Deliverable: Report detailing analysis and results.

In this work, we perform two primary tasks: (1) mathematical analysis of our data that accu-
rately combines multiple data sets from an application to average and align the phases, and (2)
application of ML methods to reduce the set of performance counters collected. We first present the
mathematical analysis that we developed to more accurately process our data prior to similarity
analysis, then we present our feature selection method.

4.1 Mathematical Analysis: Data Pre-processing

We collect the hardware performance counters from the applications using LDMS, a sampling
monitoring framework that runs on all the system nodes. We use the PAPI sampler in LDMS to
sample the counters from the application processes (MPI ranks) and nodes and store the data in
CSV files. The PAPI sampler can collect up to 30 hardware counters, so we divide our 500 counters
into several groups and collect them individually. We subsequently post-process the data files by
averaging the hardware counters, for each MPI rank then each node for each group, into one data
set consisting of a time series of one-second interval sampled data. Table 6 shows a sample data

Table 6: miniVite Data set

Original Progress Scaled Progress Appname HWC1 HWC2 HWC3
0.0 0.0 miniVite 1.975197e+07 7.117608e+05 5.811678e+05
1.0 1.0 miniVite 2.435274e+07 7.182168e+05 5.847572e+05
2.0 1.0 miniVite 3.445416e+07 7.317115e+05 6.006805e+05
3.0 2.0 miniVite 5.156964e+07 7.616228e+05 6.217035e+05
4.0 3.0 miniVite 7.627150e+07 8.073562e+05 6.467540e+05
...

359.0 358.0 miniVite 4.718202e+10 1.327342e+10 3.499148e+08
360.0 359.0 miniVite 4.718488e+10 1.327484e+10 3.499154e+08
361.0 360.0 miniVite 4.718853e+10 1.327642e+10 3.499168e+08
362.0 360.0 miniVite 4.718875e+10 1.327652e+10 3.499285e+08
363.0 361.0 miniVite 4.718910e+10 1.327674e+10 3.499363e+08

set of miniVite with a few hardware counters; we only display a portion of the counters due to the
limit in page width. We also repeat the collection process for each group five times by running
the applications using the same input to mitigate the effects of performance counter and runtime
variation. The applications use the same input and are expected to run for the same amount of
time, but variation in the execution run time exists, resulting in varying lengths of time series data
for each experiment. Table 7 shows the different run times for the five run instances of LAMMPS.

We aim to normalize all execution runs so that we eliminate performance variation and align
all data in time, thereby, accurately preserving application phases of execution. Our method to do
this is as follows:

1. We calculate a scale factor for each of the five applications by dividing each application’s run
times by the average run time of those five instances. Table 7 shows the scale factor calculated

32

Table 7: Run time Variation

jobId appname CounterGroup time Scale
1 LAMMPS L1 D Cache 1805.095581 1.045169
2 LAMMPS L1 D Cache 1725.500933 0.999082
3 LAMMPS L1 D Cache 1725.074348 0.998835
4 LAMMPS L1 D Cache 1718.414612 0.994979
5 LAMMPS L1 D Cache 1723.570011 0.997964

for LAMMPS in collecting the L1 data cache hardware group five times. The set has a mean
of 1727.085558, and the most variation shows in jobId=1 and jobID=4. The first run with
jobId=1 has a longer run time than the average, and jobId=4 has a shorter run time.

2. Use the scale factor to create progress indices in seconds and milliseconds (i.e., eliminating
the timestamp), which can be used to align the multiple runs of an application. This process
will expand or shrink the time series for each application run to match the average run time
for the five applications.

3. For applications that run faster than the average application time, we add more rows to
increase the time series. The new rows are subsequently filled with data using interpolation
from the previous and successor data points. We used the Scipy interpolate function for that
purpose. For the longer runs, we use the new progress indices to enable shrinking the original
time series by allowing some duplicate timestamps. For example, for miniVite, the average
run time for the 5 run instances was 361 seconds. The execution of miniVite in Table 6
originally ran for 363 seconds. Therefore, the time series data for this run had to end at 361
seconds. So to do that, we change the time stamp to create the number of duplicates needed
at random places to create a time series that ends at 361 seconds.

This work was initially implemented to understand how similar the proxy execution phases are
to those in the parent application. Therefore, this process was necessary to align phase boundaries
in time from the 5 executions prior to comparing the data in those phases. However, for the work
in this report, we examine proxy/parent similarity using the whole application execution only, so
we chose to use an average of the final 5 rows of hardware counter values in each application’s
performance vector. Here we aim to show that aligning the data does not affect the resulting
similarity matrix. Figure 27 is the similarity matrix before the alignment, and Figure 28 shows
the similarity matrix after the alignment. We show that the data alignment does not significantly
change the similarity outcome when we compare the overall behavior of the application’s when
using an average of the last 5 rows of performance counter values.

4.2 Feature Selection

We describe our chosen feature selection algorithm in Section 3.4 above. Although we investigated
many algorithms to do feature selection and extraction, we believe that Laplacian Score in con-
junction with a correlation filter are the most accurate and suitable for the type of performance
counter data that we collect for this work. We did this work only on the Intel platform. Feature
selection on the IBM platform is included in future work.

33

Figure 27: Cosine similarity before data align-
ment

Figure 28: Cosine similarity after data align-
ment

4.2.1 Important features

Since we assume that each proxy and parent application pair show similar performance, we set the
parameter of neighbor size to be 2 in the Laplacian score algorithm. After removing the correlated
features via the correlation filter, we get 89 ranked features. Table 8 lists the top 20 features, and

Figure 29: Cosine similarity with the top 20 important features

Figure 29 shows the cosine similarity matrix using these 20 features. Compared to using all 500
features as in Figure 19, using only the top 20 features produces a semantically more interpretable
explanation of the similarity score of an application pair. As we can see in Figure 29, all 2×2 black

34

Table 8: Top 20 features

Rank Hardware event count names

1 ‘MEM LOAD UOPS L3 HIT RETIRED:XSNP NONE’
2 ‘OFFCORE REQUESTS:DEMAND DATA RD’
3 ‘UOPS EXECUTED:THREAD’
4 ‘OFFCORE REQUESTS OUTSTANDING:ALL DATA RD’
5 ‘OFFCORE REQUESTS BUFFER:SQ FULL’
6 ‘MEM LOAD UOPS L3 MISS RETIRED:LOCAL DRAM’
7 ‘MEM LOAD UOPS RETIRED:HIT LFB’
8 ‘CYCLE ACTIVITY:CYCLES L1D MISS’
9 ‘OFFCORE REQUESTS OUTSTANDING:ALL DATA RD CYCLES’
10 ‘CYCLE ACTIVITY:CYCLES LDM PENDING’
11 ‘EXE ACTIVITY:3 PORTS UTIL’
12 ‘OFFCORE REQUESTS OUTSTANDING:L3 MISS DEMAND DATA RD’
13 ‘BR INST RETIRED:NEAR CALL’
14 ‘OFFCORE REQUESTS:ALL REQUESTS’
15 ‘ARITH:DIVIDER ACTIVE’
16 ‘ICACHE 64B:IFTAG HIT’
17 ‘MEM UOPS RETIRED:STLB MISS LOADS’
18 ‘OFFCORE REQUESTS OUTSTANDING:L3 MISS DEMAND DATA RD GE 6’
19 ‘UOPS DISPATCHED:PORT 1’
20 ‘MEM UOPS RETIRED:SPLIT STORES’

border blocks that show high similarity between proxy and parent are preserved. Unsurprisingly,
applications that are not pairs remain dissimilar.

Observation 3: 75% of the proxies in our suite demonstrate highly convergent behavior con-
cerning their parents, and, therefore, are faithful representations.

4.2.2 Feature Standard Deviation

Besides selecting the important features to preserve the similarity of proxy and parent pairs, we were
also curious about what contributes to the dissimilarity of the proxy and parent pairs. Therefore,
we investigate the full-execution run-time time series data. Using the data of hardware event
counts per second, we get the standard deviation for each application (although not all of them
are normally distributed, we assume them so in order to simplify the analysis) on each feature
(corresponding to hardware event counts). If one point is located within 2 standard deviations, we
consider this point to be within the distribution.

We calculate the standard deviation of each feature for each parent application and check
whether the accumulated mean of the same feature of a proxy application is within two standard
deviations of the parents’ accumulated mean within a normal distribution. Table 9 shows the
feature numbers for each proxy/parent pair when the difference is greater than 2, 3, 4, or 5 standard
deviations, respectively. The result is as we expect as in Figure 19. We can see that SW4lite and
SW4, and PISCARlite and PISCAR, are the most similar proxy/parent pairs because, in each
pair, the proxy only has one feature (‘MOVE ELIMINATION: SIMD NOT ELIMINATED’ and
‘UOPS EXECUTED: X87’ separately) deviating relatively far from the parent. The proxies that

35

Table 9: Dissimilarity feature source for proxy/parents pairs

Proxy and Parent pairs >2std >3std >4std >5std

ExaMiniMD / LAMMPS 10 8 8 4
SW4lite / SW4 1 1 1 1
SWFFT / HACC 17 12 11 8
miniQMC / QMCPACK 13 10 8 6
miniVite / Vite 72 38 23 21
Nekbone / Nek5000 11 6 2 2
XSbench / OpenMC 16 9 9 8
PICSARlite / PICSAR 1 1 1 0
Unique feature #s 99 64 49 38

have more features deviating farther from their parents are accordingly less similar. For example,
miniVite and Vite have 72 features with large deviation, and they are moderately similar with 35◦

in the cosine similarity matrix of Figure 19. However, XSBench and OpenMC differ by 61◦, so
we expect that XSBench would have more features outside 2 standard deviations of the its parent
distribution, OpenMC. But we do not see this in Table 9. We need to do some further investigation
into this with more closer examination of the features and their actual magnitudes.

Observation 4: A proxy application that has more event counts distributed outside of 2
standard deviations of the parent application is more divergent from its parent.

36

5 Proxy/Parent Application Kernel Comparison

The work presented here satisfies the ADCD504-56 quantitative assessment milestone:
Develop a methodology and tool infrastructure to support collecting an LDMS time-stamped appli-
cation kernel profile that enables alignment of kernel time-stamps with performance counter event
time-stamps collected via LDMS. This may or may not require application instrumentation of ker-
nels (preferably no instrumentation).
It also satisfies the ADCD504-30 milestone:
Apply a quantitative similarity comparison between proxy and parent CPU kernels. Deliverable:
include study and results in final ECP report and/or submit a workshop/conference paper on the
study and results.

Note that we did run into some technical issues and have additional work to do in this area.
We will complete this milestone, but open a new milestone to reflect the work that we will be doing
between now and the end of the FY.

Our aim with this work is to compare the behavior of the primary kernels implemented in
respective proxy/parent application pairs. Through this, we aim to discover where in the full-
execution of the application, similarity or divergence lies and which kernels are similar or different.
This sounds fairly simple until these applications are profiled. Many proxies have very different
implementations compared to their parents. In addition to profiling, detailed code inspection is
required to determine kernels of similar functionality, since names and general code structure are
not often similar between a proxy and its parent.

We first present the methodology by which we propose to collect this data. We then present
and discuss the platform that we use and the proxy/parent profiles. We include a short section
on the issues that we encountered during this work. We then present the data that we collected
on two proxy/parent pairs. Finally, we conclude this section with a short discussion about future
work.

5.1 Kernel Comparison Methodology

A recently developed capability within the Lightweight Distributed Metric Service (LDMS) makes
it possible to use LDMS and our PAPI sampler plugin to collect performance counter data from
instrumented kernels. LDMS Streams is an API for publishing and subscribing to support data
event collection. Using this in conjunction with the PAPI sampler, we can collect performance
counter data within distinct kernel regions.

5.1.1 LDMS and LDMS Streams

In order to receive published Streams data, LDMS daemons and plugins subscribe to a Streams
tag and receive any published data events which match that tag. This is illustrated in Figure 30
(bottom). At publication, data is specified as being in either string or JSON format.

Synchronized data collection is achieved across LDMS sampler plugins through the use of a
wake-up driven sampling process scheduled against the compute-node’s local real-time clock. Syn-
chronization errors in data acquisition across a cluster are the result of real-time clock skew, which
is typically minimal on a well-managed HPC cluster, and of wake-up decisions by the OS kernel.
In practice, variations of up to a few milliseconds are seen in production systems.

By instrumenting kernels with a start/stop kernel name specifier with the Streams API, we get
a timestamp with these specifiers that can be correlated to the timestamped PAPI sampler plugin
data. Through timestamp correlation, we can determine which PAPI data belongs to which kernel.

37

Figure 30: LDMS data collection and transport modes for system data (top) and event data
(bottom). Black arrows indicate data flows and Tag A indicates a Streams name.

5.2 Experimental Platform

We use the Intel Skylake platform described in Section 3.5.2. Of the applications described in
Section 3.5.1, we use the following proxy/parent pairs:

• miniQMC/QMCPACK

• miniVite/Vite

• sw4lite/SW4

• XSbench/openMC

5.3 Application Profiles

For each of the applications under investigation, we collect execution profiles using gprof, with the
exception of openMC. For some reason, openMC fails with gprof so we had to use CrayPAT to
generate its execution profile.

Two characteristics of gprof that we need to keep in mind when doing this work are:

1. it samples at 0.01sec granularity, so kernels that account for a large percentage of execution
time, but execute a single instantiation faster than 0.01 sec will not be recorded.

2. it does not account for blocked time. For example, if a kernel blocks for communication,
synchronization, or anything else, this time will not be accounted for in the execution profile.

Without further analysis, it is not fully clear that gprof not accounting for blocked time affects
our analysis. For now, we assume that it doesn’t. In future work, we’ll look at this issue closer.
Based on manual code inspection, we do not believe that the sampling period is resulting in missing
data. The functions that we expect to account for large portions of total execution time do, although
we’ll do a more thorough code analysis in future work to ensure this is the case.

Tables 10 and 11 summarize the flat profile generated by gprof for miniVite and Vite, respec-
tively. We say this is a summary because not all of the data from the profile is included here. We
include enough data to show why generating call graphs is a better way to understand an execution
profile.

These flat profiles are very difficult to read and can be confusing. For example, one might think

38

Table 10: Execution Profile, miniVite

% time cum secs self secs calls self s/call total s/call name

27.41 34.47 34.47 3840000 0.00 0.00 distGetMaxIndex
17.73 56.76 22.29 57204054 0.00 0.00 Rb tree:: M get insert unique pos
12.45 72.42 15.66 3840000 0.00 0.00 distBuildLocalMapCounter
10.98 86.23 13.81 3840000 0.00 0.00 distExecuteLouvainIteration
7.68 95.89 9.66 31183927 0.00 0.00 Node iterator:: M insert
6.74 104.36 8.47 29591844 0.00 0.00 Node iterator:: M emplace
4.46 109.97 5.61 3 1.87 15.66 fillRemoteCommunities
3.93 114.91 4.94 8007 0.00 0.00 Rb tree:: M erase
3.92 119.84 4.93 1 4.93 7.06 exchangeVertexReqs
1.63 121.89 2.05 9863948 0.00 0.00 Hashtable:: M insert unique node
0.55 124.29 0.69 3 0.23 0.31 updateRemoteCommunities
0.45 124.86 0.57 72267964 0.00 0.00 Graph::get owner
0.31 125.25 0.39 1 0.39 124.33 distLouvainMethod
0.07 125.64 0.09 1 0.09 0.09 BinaryEdgeList::read
0.06 125.71 0.07 1 0.07 0.10 distInitLouvain
0.02 125.74 0.03 2 0.02 0.02 std::vector:: M default append

that instrumenting the functions that account for the largest percentage of time is probably the
correct action to take. However, most of these functions in the miniVite and Vite profiles are called
so many times that the time for a single instantiation of that function is essentially 0.

With LDMS, we typically sample data every 1s. This is the most common sampling period we
have ever used in any context of work. LDMS is advertised as being capable of sampling in the
millisecond range, but we have never used this capability and have not validated that data collected
at this granularity is valid. This brought us to look for kernels that execute for at least one second
for a single instantiation.

Because the gprof flat profiles are tedious to sift through, we use a tool called grof2dot that
generates a call graph with timing data imposed on the nodes. We found this to be a more efficient
tool for identifying good instrumentation points.

Figure 31: Execution Profile, miniVite

Figures 31 and 32 are graphic representations of the gprof flat profiles of miniVite and Vite,
respectively. The text that appears in each box is:

• function name

• total time % (self time %)

• total calls

where total time % is the percentage of the running time spent in this function and all its children;

39

Table 11: Execution Profile, Vite

% time cum secs self secs calls self s/call total s/call name

30.19 718.53 718.53 27613312 0.00 0.00 distGetMaxIndex
23.11 1268.53 550.00 27613312 0.00 0.00 distBuildLocalMapCounter
12.13 1557.36 288.84 792277693 0.00 0.00 Node iterator:: M insert
10.78 1813.88 256.52 609357178 0.00 0.00 Rb tree:: M get insert unique pos
5.59 1946.84 132.95 129 1.03 6.25 fillRemoteCommunities
5.11 2068.42 121.58 787817722 0.00 0.00 Node iterator:: M emplace
2.79 2134.76 66.34 23965 0.00 0.00 Rb tree:: M erase
2.33 2190.16 55.40 27613312 0.00 0.00 distExecuteLouvainIteration
1.37 2222.75 32.59 5 6.52 6.87 fill newEdgesMap
1.12 2249.35 26.60 129 0.21 0.23 updateRemoteCommunities
0.83 2288.84 19.66 6 3.28 4.46 exchangeVertexReqs
0.80 2307.99 19.15 55585079 0.00 0.00 Node iterator:: M emplace
0.49 2333.03 11.60 1257031360 0.00 0.00 DistGraph::getOwner
0.37 2341.90 8.87 258 0.03 0.03 M default append
0.36 2350.59 8.69 43267420 0.00 0.00 Hashtable:: M insert unique node
0.21 2355.55 4.96 1 4.96 7.03 setUpGhostVertices
0.18 2359.85 4.30 26639769 0.00 0.00 Rb tree::find
0.18 2364.10 4.25 6 0.71 9.51 distReNumber
0.14 2367.51 3.41 5 0.68 18.54 distbuildNextLevelGraph
0.09 2372.72 2.07 6 0.35 375.64 distLouvainMethod
0.00 2380.44 0.00 1 0.00 375.64 distLouvainMethodWithColoring

self time % is the percentage of the running time spent in this function alone; total calls is the
total number of times this function was called (including recursive calls). An edge represents the
calls between two functions and has the following layout:

total time \%

calls

parent --------------------------------> children

where total time % is the percentage of the running time transferred from the children to this
parent (if available); calls is the number of calls the parent function called the children.

The color of the nodes and edges varies according to the total time % value. Functions where
most of the execution time is spent (hot-spots) are marked as red, and functions where little time
is spent are marked as dark blue. Functions where negligible or no time is spent do not appear in
the graph by default.

Looking at Figure 31 for miniVite, we would want to instrument the kernels marked in a green
color. As was shown in the flat profile, distExecuteLouvainIteration and distGetMaxIndex are called
over 1 million times and since we cannot sample reliably right now at less than 1 second intervals,
we cannot instrument these functions. If we go up a level in the call graph and instrument distLou-
vainMethod, we capture practically the entire execution, for which we already have performance
counter data.

We ran into the problem noted above not only for miniVite and Vite, but also for several of the
other proxy/parent applications pairs that we planned to target. We include the flat profile data
and generated call graphs for all of the target proxy/parent pairs in Appendix B.

40

Figure 32: Execution Profile, Vite

5.3.1 Work Accomplished

Because we ran into the significant problem noted above, that we really need a tool that can sample
at sub-second intervals due to the short execution time of most of our target application kernels,
we had to modify our work plan. We planned to perform a kernel comparison on four proxy/parent
pairs (miniQMC/QMCPACK, miniVite/Vite, sw4lite/sw4, XSBench/openMC). However, because
we discovered this issue relatively late in this work, after we had profiled and instrumented all of
the target codes, we actually accomplished the following:

• miniQMC/QMCPACK kernel comparison: For QMCPACK, we were able to instrument the
DMC (diffusion Monte Carlo) and VMC (variational Monte Carlo) kernels separately. These
kernels were at a level in the call graph that did not include the full execution. MiniQMC only
implements DMC. Therefore, we chose to compare the DMC and VMC kernels in QMCPACK
to the execution of DMC in miniQMC.

• sw4lite/sw4 kernel comparison: Although we have not validated the data collection capability
of LDMS using Streams and the PAPI sampler plugin at millisecond sampling granularity,
we instrumented the kernels that we identified as equivalent in sw4lite/sw4 and collected the
performance counter data for these kernels. We use this performance counter data in our
cosine similarity analysis to determine similarity/divergence in this kernel behavior.

The results for these experiments are presented in Section 5.3.2 below. Note that we will elaborate
on how this limited study affects future milestones in Section 5.3.3.

5.3.2 Results

Figures 33–36 show the results of comparing the DMC and VMC kernels in QMCPACK to the full
execution of miniQMC, which implements the DMC algorithm. We use cosine similarity in this
analysis to quantify the angle in degrees between performance event vectors collected for each of
the DMC/VMC kernels in QMCPACK. We compare these vectors to the performance event vector
of miniQMC’s full execution. We also present data for comparison between L1 data, L2, and L3
cache. From Figure 19 we see that miniQMC and QMCPACK are 11◦ apart. Figure 33 shows that
miniQMC is the same distance from QMCPACK DMC and VMC. This is surprising, but note that
QMCPACK DMC and VMC differ by only 3◦. Figures 34 and 35 show miniQMC closer to QM-
CPACK VMC than DMC, which is counter-intuitive. However, looking at the execution profiles
of these applications in Figures 41 and 42, the DMC::run call graph in QMCPACK does not look
very similar compared to that of miniQMC–functions are quite different and have different tim-
ings. This supports our idea that differences between these two applications are primarily because
QMCPACK has benefitted from significant development efforts that have not been implemented in

41

Figure 33: Cosine Similarity, QMCPACK DM-
C/VMC vs miniQMC full execution

Figure 34: Cosine Similarity, QMCPACK DM-
C/VMC vs miniQMC full execution, L1 Data
Cache

Figure 35: Cosine Similarity, QMCPACK DM-
C/VMC vs miniQMC full execution, L2 Cache

Figure 36: Cosine Similarity, QMCPACK DM-
C/VMC vs miniQMC full execution, L3 Cache

42

miniQMC.

Figure 37: Cosine Similarity, sw4lite/sw4 Ker-
nels

Figure 38: Cosine Similarity, sw4lite/sw4 Ker-
nels, Memory Pipeline Stage

Figure 39: Cosine Similarity, sw4lite/sw4 Ker-
nels, Decode/Issue Pipeline Stage

Figure 40: Cosine Similarity, sw4lite/sw4 Ker-
nels, Execution Pipeline Stage

Figures 37–40 show cosine similarity kernel comparisons between sw4lite and sw4. Keep in mind
that we have not validated our collection tool when sampling at the subsecond granularity that is
required to obtain this data. Validating LDMS, LDMS Streams, and our plugin at this sampling
granularity will be done in future work.

From Figure 19 we see that sw4lite and sw4 are only 2◦ apart. The code base of sw4 and sw4lite
is very similar. The functionality implemented in some of the sw4lite kernels is simplified compared
to that in sw4. Figure 37 shows the kernel comparison using the full performance event vector within
these code kernels. The interesting thing here is all of the kernels between the two applications
align fairly well with the exception of evalDpDminTime. However, this kernel accounts for only
about 3.39% of around 95% of total execution time, which is not enough to affect divergence. The
remaining figures show similarity between sw4lite and sw4 kernels for various components in the

43

processor architecture. The primary thing to note here is that the outlier in all of these plots is the
dissimilarity between the evalDpDminTime kernel in the two apps.

5.3.3 Future Work

Because we ran into the issue of un-validated millisecond sampling interval in our collection tool,
we did not collect full data for a complete comparison of kernels between our target proxy/parent
pairs. Therefore, we will create a new milestone to be delivered at the end of FY22 that includes:

1. Validation of sub-second sampling intervals using LDMS Streams and the PAPI performance
counter plugin. We will validate the data we collect within kernels with a tool such as Vtune
or HPCToolkit.

2. Similarity comparison between proxy/parent pairs including miniQMC/QMCPACK, miniVite/Vite,
sw4/sw4lite, XSBench/openMC.

44

6 Proxy Apps: Do they Predict Performance of Their Parents?

We have done much work in this project to understand if proxy applications are representative
of the underlying hardware behavior of their respective parents. Because proxy apps are used in
system procurement, we began to ask whether proxy execution time is predictive of parent app
execution time. We often use proxy applications as benchmarks for HPC system procurement. If
proxies do not predict the execution time/scaling behavior of their respective parents, this could
potentially be problematic.

We present our predictability studies for a subset of proxy/parent application pairs below. This
study is performed on CPUs only, but we have a GPU predictability study milestone due at the
end of the FY.

6.1 LAMMPS and ExaMiniMD

LAMMPS is a classical molecular dynamics simulation code and stands for Large-scale Atomic/-
Molecular Massively Parallel Simulator. ExaMiniMD is a proxy application for molecular dynamics
particle codes and is able to run a restricted set of LAMMPS inputs. A comparison of the run
times for the two on Mutrino is in Table 12 and on Stria is in Table 13. Mutrino is an Intel Haswell
system, while Stria is an ARM-based system.

Problem Size Ranks LAMMPS ExaMiniMD Ratio
SNAP Ta 262144 32 1108.8 1022.9 0.92
SNAP Ta 262144 128 1145.0 1031.8 0.90
SNAP Ta 262144 512 1166.6 1052.4 0.90
SNAP Ta 262144 2048 1189.6 1044.08 0.88
SNAP Ta 512000 32 1121.8 929.6 0.83
SNAP Ta 512000 128 1154.6 936.4 0.81
SNAP Ta 512000 512 1190.0 951.8 0.80
SNAP Ta 512000 2048 1235.6 - -
SNAP Ta 32768 32 348.4 365.8 1.05
SNAP Ta 32768 128 356.4 366.4 1.03
SNAP Ta 32768 512 367.6 372.0 1.01
SNAP Ta 32768 2048 372.8 371.1 1.00
SNAP W 64000 32 1871.6 2513.0 1.34
SNAP W 64000 128 1914.3 2531.7 1.32
SNAP W 64000 512 1901.7 2545.8 1.34
SNAP W 64000 2048 1916.4 2579.2 1.35
lj 262144 32 1016.6 1142.5 1.12
lj 262144 128 1041.8 1157.1 1.11
lj 262144 512 1063.6 1178.7 1.11
lj 262144 2048 - - -

Table 12: LAMMPS and ExaMiniMD average times on Mutrino

For these results, we use three problems. We use the SNAP Ta problem with three sizes, the
SNAP W problem, and a Lennard-Jones problem. The size is the numbers of lattice points per
rank. For the SNAP problems, LAMMPS has 2 atoms per lattice point, while ExaMiniMD has 1
atom per lattice point. For the Lennard-Jones problem, both codes have 4 atoms per grid point. For
the results that are not represented in the tables, those problems were too large to run. For a given
problem at a given size, the ratio between the codes is fairly constant, but overall, ExaMiniMD

45

Problem Size Ranks LAMMPS ExaMiniMD Ratio

SNAP Ta 149767 56 1374.8 904.1 0.658

SNAP Ta 149767 224 1377.8 916.0 0.665

SNAP Ta 149767 896 1394.4 910.2 0.653

SNAP Ta 149767 3584 1454.0 917.5 0.631

SNAP Ta 292571 56 1387.8 817.2 0.589

SNAP Ta 292571 224 1389.8 823.9 0.593

SNAP Ta 292571 896 1419.0 829.5 0.585

SNAP Ta 292571 3584 1494.2 - -

SNAP Ta 18725 56 436.6 331.1 0.758

SNAP Ta 18725 224 436.0 333.4 0.765

SNAP Ta 18725 896 439.4 335.7 0.764

SNAP Ta 18725 3584 446.8 337.5 0.755

SNAP W 36571 56 2259.5 2262.3 1.00

SNAP W 36571 224 2262.4 2354.0 1.04

SNAP W 36571 896 2266.0 2358.3 1.04

SNAP W 36571 3584 2280.2 2296.6 1.01

LJ 524288 774.8 56 1101.7 1.42

LJ 524288 780.2 224 1104.2 1.42

LJ 524288 777.6 896 1108.7 1.43

LJ 524288 780.0 3584 1131.1 1.45

Table 13: LAMMPS and ExaMiniMD average times on Stria

46

does not seem to be predictable of LAMMPS execution time. What these results do show is that
the two codes weak scale similarly.

6.2 Nek5000 and Nekbone

Nek5000 is a Computational Fluid Dynamics (CFD) code that solves problems using GMRES and
the spectral element method. Nekbone solves a standard Poisson equation using the conjugate
gradient method with a fixed number of iterations with a simple or spectral element multigrid
preconditioner. A comparison of the run times for the two on Mutrino is in Table 14 and on Stria
is in Table 15.

Problem Ranks Nek5000 Nekbone Ratio

small 32 110.2 1.05 0.0095

small 128 153.1 1.11 0.0072

small 512 120.8 1.17 0.0096

small 2048 176.3 1.22 0.0069

large 32 1040.9 4.07 0.0039

large 128 556.3 4.17 0.0075

large 512 529.2 4.25 0.0080

large 2048 1541.3 4.38 0.0028

Table 14: Nek5000 and Nekbone average times on Mutrino

Problem Ranks Nek5000 Nekbone Ratio

small 56 229.4 1.33 0.0058

small 224 151.9 1.42 0.0094

small 896 257.9 1.46 0.0057

small 3584 314.3 1.56 0.0050

large 56 661.9 4.39 0.0066

large 224 776.2 4.58 0.0059

large 896 788.9 4.66 0.0059

large 3584 1184.5 4.88 0.0041

Table 15: Nek5000 and Nekbone average times on Stria

The problem that is being used for Nek5000 is an eddy simulation while Nekbone is run with
the same number of elements per rank. The small problem has 160 elements per rank, while the
large problem has 500 elements per rank. The ratio of time is the time of Nekbone divided by the
time for Nek5000. We can see that there is no correlation of times between the two codes. Nekbone
does show a reasonable weak scaling for both of the problems on both machines, but the Nek5000
timings seem to vary without any pattern. Since GMRES and the conjugate gradient method are
both Krylov methods, the underlying operations, such as matrix multiplication and dot products,
are similar and Nekbone could be a good proxy for Nek5000.

47

6.3 PICSAR and PICSARlite

PICSAR is a Particle-In-Cell code that is an acronym for Particle-In-Cell Scalable Application
Resource from which the proxy code PICSARlite can be extracted. A comparison of the run times
for the two codes on Mutrino is in Table 16 and on Stria is in Table 17. The runs for PICSAR were
done with I/O disabled since that added a large and variable overhead.

Problem Ranks PICSAR PICSARlite Ratio

input file 32 523.4 238.2 0.455

input file 128 565.2 258.9 0.458

input file 512 816.1 343.2 0.421

input file 2048 963.0 407.4 0.423

homogeneous plasma 32 369.1 378.6 1.026

homogeneous plasma 128 793.4 778.8 0.982

homogeneous plasma 512 1201.8 1226.1 1.020

homogeneous plasma 2048 2309.6 2305.2 0.998

langmuir wave 32 908.0 387.9 0.427

langmuir wave 128 1024.0 491.5 0.480

langmuir wave 512 1057.9 503.8 0.476

langmuir wave 2048 1073.8 521.1 0.485

Table 16: PICSAR and PICSARlite average times on Mutrino

Problem Ranks PICSAR PICSARlite Ratio

input file 56 1548.6 427.8 0.276

input file 224 1657.0 458.9 0.277

input file 896 1872.5 525.0 0.280

input file 3584 1895.8 554.3 0.292

homogeneous plasma 56 612.0 559.6 0.914

homogeneous plasma 224 938.0 858.7 0.915

homogeneous plasma 896 1554.4 1420.1 0.914

homogeneous plasma 3584 2471.0 2271.0 0.919

Table 17: PICSAR and PICSARlite average times on Stria

All three of the problems are weak scaled to the number of ranks that they are run on. The
Langmuir wave problem would not run on Stria. What these tables show is that PICSARlite is
not predictive of PICSAR. However, the two codes have a similar weak scaling. In looking at
profiles of the codes, much of the underlying code is the same and has similar timings for a run for
a given problem on some number of ranks. However, PICSAR calls a couple of routines that do
energy deposition which takes a good amount of time. In that case, PICSARlite could be a good
representation of the portion of PICSAR for the code that they have in common.

6.4 SW4 and SW4lite

SW4 is a 3-D seismic modeling code and stands for Seismic Waves, 4th order accuracy. SW4lite
is a bare bones version of SW4 that is used to test versions of the important numerical kernels of

48

SW4 for performance optimization. A comparison of the run times for the two codes on Mutrino
is in Table 18 and on Stria is in Table 19.

Problem Size Ranks SW4 SW4lite Ratio

GaussianHill h=0.008 32 1334.2 1283.1 0.962

GaussianHill h=0.005 128 1430.5 1351.1 0.944

GaussianHill h=0.003 512 1666.7 1584.4 0.951

GaussianHill h=0.002 2048 1694.7 1644.4 0.970

LOH1 h=50.0 32 1671.9 1572.2 0.940

LOH1 h=31.5 128 2379.9 2265.1 0.952

LOH1 h=19.8 512 3621.5 3423.3 0.945

LOH1 h=12.5 2048 6410.1 6112.9 0.954

point source sg1 32 17.83 8.09 0.454

point source sg2 32 250.1 116.6 0.466

point source sg2 128 71.34 30.97 0.434

point source sg3 128 1002.9 459.2 0.458

point source sg2 512 24.05 10.03 0.417

point source sg3 512 287.3 124.7 0.434

point source sg3 2048 98.34 45.03 0.458

point source sg4 2048 1173.3 532.8 0.454

Table 18: SW4 and SW4lite average times on Mutrino

Problem Size Ranks SW4 SW4lite Ratio

GaussianHill h=0.008 56 1282.7 1304.4 1.017

GaussianHill h=0.005 224 1367.7 1412.3 1.033

GaussianHill h=0.003 896 1547.3 1620.3 1.047

GaussianHill h=0.002 3584 1627.7 1647.1 1.012

LOH1 h=50.0 56 1475.1 1494.4 1.013

LOH1 h=31.5 224 2306.2 2380.0 1.032

LOH1 h=19.8 896 3621.3 3738.9 1.032

LOH1 h=12.5 3584 6150.7 6288.8 1.022

point source sg1 56 141.2 8.13 0.057

point source sg2 56 1853.4 118.5 0.064

point source sg2 224 560.3 32.80 0.059

point source sg3 224 7380.2 467.6 0.063

point source sg2 896 195.5 9.41 0.048

point source sg3 896 2234.6 131.7 0.059

point source sg3 3584 783.8 41.78 0.053

point source sg4 3584 8935.0 533.5 0.060

Table 19: SW4 and SW4lite average times on Stria

The tables show that the runtimes for SW4 and SW4lite correlate fairly well for the GaussianHill
and LOH1 problems, but not for the point source problem. If we look at profiles of the code, we

49

find that the point source problem is a special case for both SW4 and SW4lite. For SW4, the code
checks the simulation answer at each timestep which takes a significant amount of the run time,
while for SW4lite the answer is checked once at the end of the simulation. Therefore, we can say
that for some problems, SW4lite is predictive of SW4.

6.5 Vite and miniVite

Vite is an application that does graph clustering and graph community detection using the Louvain
method. The Louvain method consists of several phases each of which has a number of iterations. It
is implemented in MPI and OpenMP and has several parallel heuristics and approximate computing
techniques. MiniVite is a proxy application that implements a single phase of the Louvain method.
A comparison of the run times for the two on Mutrino is in Table 20 and on Stria is in Table 21.

Problem Size Ranks Vite miniVite Ratio

USA road 23.9M 32 32.3 23.6 0.65

random 25.6M 32 622.1 91.8 0.148

random 25.6M 128 189.4 21.0 0.111

random 102.4M 128 1700.2 101.5 0.060

random 102.4M 512 494.4 23.8 0.048

random 164M 512 777.5 38.8 0.50

random 164M 2048 241.1 13.9 0.057

Table 20: Vite and miniVite average times on Mutrino

Problem Size Ranks Vite miniVite Ratio

USA road 23.9M 56 39.5 27.8 0.71

random 25.6M 56 924.8 130.7 0.141

random 25.6M 224 249.9 28.5 0.114

random 102.4M 224 2464.2 138.7 0.056

random 102.4M 896 888.1 85.1 0.096

random 164M 896 1490.1 89.8 0.060

random 164M 3584 2122.1 73.7 0.035

Table 21: Vite and miniVite average times on Stria

The size of the problem refers to the number of verticies in the graph, the times are the average
of five runs, and the ratio is the miniVite time divided by the Vite time. As can be seen from
the tables, there seems to be no correlation between the times for Vite and miniVite. MiniVite
performs one phase of the Louvain method on the problem, while Vite does several phases until
the method converges. The number of iterations that are done on the one phase that miniVite
performs corresponds to the number of iterations for the first phase of Vite, but the subsequent
phases for Vite have more iterations and the number of phases and iterations per phase varies both
with the problem and, to a lesser effect, the number of ranks being used to solve the problem. So, if
we look at the strong scaling of Vite and miniVite for the problems we have here, they do not scale
similarly. However, even with miniVite not being predictive of the runtime of Vite, its behavior
should be similar to Vite for a single phase since the underlying routines are the same.

50

6.6 Conclusion

For the five sets of proxies and parents that we studied, we found that only one proxy was predictive
of its parent. For the example problems that we ran, SW4lite was predictive of SW4. In looking
deeper at the other parent/proxy pairs, we see various differences. For example, with Vite and
miniVite, the underlying routines are the same, but miniVite does one iteration while Vite iterates
the problem to solution. PICSARlite is derived from PICSAR and for the problems that we ran, the
underlying timings are very similar except that PICSAR calls some routines to do energy deposition
that are fairly costly that PICSARlite does not call. Nek5000 and Nekbone both have Krylov based
solvers, but the solver for Nek5000 is more complex and solves a real problem while Nekbone solves
a Poisson problem. The last pair, LAMMPS and ExaMiniMD were solving the same problems with
similar algorithms, but there seems to be no correlation for their timings. These various proxies
seem to be representative of their parents in some ways, but not necessarily predictive of run time
with the problems we ran them with.

51

7 Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Ad-
ministration.

We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of
Energy Under contract DE-AC05-00OR22725.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

52

A Performance Counter Groups

Here we list all of the component groups that we define and the events that belong to these
respective groups. Event groups with a Primary indicator mean that this group can be used to
compare similarity behavior across different systems. Again, these groupings are not perfect, but
are an initial attempt to capture per-component behavior.

Table 22: Instruction and L1D Cache Component Groups

Instruction L1D

IBM P9 Intel SKX IBM P9 Intel SKX

PM L1 ICACHE MISS ICACHE 64B:IFTAG HIT PM LD MISS L1 L1D:REPLACEMENT
PM INST FROM L2 ICACHE 64B:IFTAG MISS PM LD REF L1 MEM LOAD RETIRED:L1 HIT
PM INST FROM L2MISS L2 RQSTS:ALL CODE RD PM ST MISS L1 MEM LOAD RETIRED:L1 MISS
PM L2 INST MISS L2 RQSTS:CODE RD HIT PM ST FIN MEM LOAD UOPS RETIRED:HIT LFB
PM INST FROM L3 L2 RQSTS:CODE RD MISS PM L1 DCACHE RELOAD VALID
PM INST FROM L3MISS PM DATA FROM L2
PM INST FROM LL4 PM DATA FROM L2MISS
PM INST FROM LMEM PM DATA FROM L3
PM INST FROM RL4 PM DATA FROM L3MISS
PM INST FROM RMEM PM DATA FROM LMEM
PM INST FROM DL4 PM DATA FROM RMEM
PM INST FROM DMEM PM DATA FROM DMEM
PM IC PREF WRITE PM L1 PREF
PM L2 INST PM LD MISS L1 FIN
PM L2 IC INV
PM ISIDE DISP
PM L2 LD
PM L2 ST
PM INST FROM L1
PM IC MISS CMPL

Table 22 shows events for the IBM Power9 and Intel Skylake for the instruction and L1 data
caches.

53

B Application Profiles

Table 23: Execution Profile, miniQMC

% time cum secs self secs calls self s/call total s/call name

27.83 35.09 35.09 419175 0.00 0.00 MultiBspline::evaluate vgh
12.28 50.57 15.48 1 15.48 15.48 einspline spo::set
9.67 62.76 12.19 418980 0.00 0.00 DistanceTableAA::evaluate
6.53 82.28 8.23 419153 0.00 0.00 DistanceTableAA::move
5.85 89.66 7.38 330606 0.00 0.00 einspline sp::evaluate v
5.09 96.08 6.42 210104 0.00 0.00 TwoBodyJastrow::acceptMove
4.78 102.10 6.02 330693 0.00 0.00 DistanceTableAA::moveOnSphere
3.64 106.69 4.59 419036 0.00 0.00 DiracDeterminant::ratioGrad
2.66 110.04 3.35 419182 0.00 0.00 TwoBodyJastrow::ratioGrad
2.57 113.28 3.25 330772 0.00 0.00 DiracDeterminant::ratio
1.14 116.80 1.44 28 0.05 0.05 DistanceTableAA::evaluate
1.05 118.13 1.33 419070 0.00 0.00 DistanceTableBA::evaluate
0.84 119.19 1.06 56 0.02 0.02 DiracDeterminant::DiracDeterminant
0.68 120.05 0.86 27 0.03 0.03 DistanceTableAA::resize
0.55 120.74 0.69 28 0.02 0.02 TwoBodyJastrow::evaluateLog
0.51 121.38 0.64 419155 0.00 0.00 DistanceTableBA::move
0.44 122.52 0.55 56 0.01 0.01 DiracDeterminant::evaluateLog
0.40 123.03 0.51 330616 0.00 0.00 TwoBodyJastrow::ratio
0.36 123.49 0.46 330681 0.00 0.00 DistanceTableBA::moveOnSphere
0.24 124.19 0.30 504998 0.00 0.00 OneBodyJastrow::computeU3
0.11 124.63 0.14 418943 0.00 0.00 OneBodyJastrow::ratioGrad
0.10 124.75 0.12 210080 0.00 0.00 WaveFunction::acceptMove
0.10 124.87 0.12 28 0.00 0.01 OneBodyJastrow::evaluateLog
0.00 126.07 0.00 1 0.00 15.48 build SPOSet

Figure 41: Execution Profile Call Graph, miniQMC

54

Table 24: Execution Profile, QMCPACK

% time cum secs self secs calls self s/call total s/call name

22.83 42.18 42.18 294927 0.00 0.00 BsplineSet::evaluate
17.12 73.81 31.63 959235 0.00 0.00 SoaDistanceTableAA::move
13.64 99.00 25.19 664308 0.00 0.00 BsplineSet::evaluate
7.26 126.16 13.41 294927 0.00 0.00 SoaDistanceTableAA::evaluate
4.11 133.75 7.59 137802 0.00 0.00 J2OrbitalSoA::acceptMove
2.97 139.24 5.49 63 0.09 0.11 BsplineSet::evaluate notranspose
2.64 144.12 4.88 391695 0.00 0.00 SplineC2RSoA::assign vgl
2.44 148.62 4.50 294912 0.00 0.00 DiracDeterminant::evalGrad
1.90 155.90 3.51 294927 0.00 0.00 J2OrbitalSoA::ratioGrad
1.72 159.08 3.18 959235 0.00 0.00 SoaDistanceTableBA::move
1.15 163.92 2.13 73 0.03 0.03 CoulombPBCAA::evalSR
1.10 165.96 2.04 2103504 0.00 0.00 solve periodic interp 1d d
1.09 167.98 2.02 22 0.09 0.09 SoaDistanceTableAA::evaluate
1.09 169.99 2.01 174 0.01 0.03 DiracDeterminant::updateBuffer
0.97 171.79 1.80 294927 0.00 0.00 SoaDistanceTableBA::evaluate
0.88 175.21 1.62 2 0.81 2.02 SplineAdoptorReader::initialize spline pio gather
0.61 176.33 1.12 664308 0.00 0.00 J2OrbitalSoA::ratio
0.50 177.26 0.93 32 0.03 0.03 DiracMatrix::invert transpose
0.40 178.00 0.74 294927 0.00 0.00 DiracDeterminant::ratioGrad
0.28 179.07 0.51 294927 0.00 0.00 CoulombPBCAB::evalSR
0.25 180.05 0.47 16 0.03 0.03 J2OrbitalSoA::evaluateLog
0.17 180.37 0.32 2103504 0.00 0.00 find coefs 1d d
0.16 180.96 0.29 32 0.01 0.14 DiracDeterminant::evaluateLog
0.14 181.22 0.26 72 0.00 0.71 NonLocalECPotential::evaluate
0.12 181.45 0.23 137802 0.00 0.00 DiracDeterminant::acceptMove
0.12 181.68 0.23 41 0.01 2.58 VMCUpdatePbyP::advanceWalker
0.11 182.09 0.20 19 0.01 0.01 SoaDistanceTableBA::evaluate
0.02 184.25 0.03 17 0.00 1.79 DMCUpdatePbyPWithRejectionFast::advanceWalker
0.00 184.72 0.00 1 0.00 9.85 DMC::resetUpdateEngines()
0.00 184.72 0.00 1 0.00 38.51 DMC::run()
0.00 184.72 0.00 1 0.00 113.13 VMC::run()
0.00 184.72 0.00 1 0.00 30.51 VMC::resetRun()

55

Figure 42: Execution Profile Call Graph, QMCPACK

Figure 43: Execution Profile Call Graph, sw4lite

56

Figure 44: Execution Profile Call Graph, sw4

Figure 45: Execution Profile Call Graph, XSBench

57

Figure 46: Execution Profile Call Graph, openMC

58

References

[1] Hpc challenge benchmark. https://icl.utk.edu/hpcc/.

[2] The pennant mini-app. https://github.com/lanl/PENNANT.

[3] Picsar: Particle-in-cell scalable application resource. https://picsar.net/code/.

[4] Scipy wasserstein distance. https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.wasserstein_distance.html.

[5] Snap: Sn (discrete ordinates) application proxy. https://github.com/lanl/SNAP.

[6] Hpcg benchmark. https://www.hpcg-benchmark.org/, 2020.

[7] Anthony Agelastos et al. The Lightweight Distributed Metric Service: A Scalable Infras-
tructure for Continuous Monitoring of Large Scale Computing Systems and Applications. In
SC’14: Proc. International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, pages 154–165. IEEE Press, 2014.

[8] A. S. Almgren et al. CASTRO: A New Compressible Astrophysical Solver. I. Hydrodynamics
and Self-gravity. Astrophysical Journal, 715:1221–1238, June 2010. doi:10.1088/0004-637X/
715/2/1221.

[9] R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux, J.P. Luitjens,
and D. Roweth. Navigating an evolutionary fast path to exascale. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, pages 355–365, 2012. doi:

10.1109/SC.Companion.2012.55.

[10] Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial dif-
ferential equations. Journal of Computational Physics, 53(3):484 – 512, 1984. doi:https:

//doi.org/10.1016/0021-9991(84)90073-1.

[11] James Dickson, Steven Wright, Satheesh Maheswaran, Andy Herdman, Mark C. Miller, and
Stephen Jarvis. Replicating HPC I/O Workloads with Proxy Applications. In 2016 1st Joint
International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Sys-
tems (PDSW-DISCS), pages 13–18, 2016. doi:10.1109/PDSW-DISCS.2016.007.

[12] V. Dobrev, Tz. Kolev, and R. Rieben. High-order curvilinear finite element methods for la-
grangian hydrodynamics. SIAM Journal on Scientific Computing, 34:B606–B641, 2012. URL:
https://doi.org/10.1137/120864672.

[13] Exascale Proxy Application Suite, 2020. URL: https://proxyapps.exascaleproject.org.

[14] Dominik Maria Endres and Johannes E Schindelin. A new metric for probability distributions.
IEEE Transactions on Information theory, 49(7):1858–1860, 2003.

[15] S. Ghosh et al. MiniVite: A Graph Analytics Benchmarking Tool for Massively Parallel
Systems. In IEEE/ACM Perf. Modeling, Benchmarking and Sim. of High Perf. Computer
Systems (PMBS), November 2018.

59

https://icl.utk.edu/hpcc/
https://github.com/lanl/PENNANT
https://picsar.net/code/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://github.com/lanl/SNAP
https://www.hpcg-benchmark.org/
http://dx.doi.org/10.1088/0004-637X/715/2/1221
http://dx.doi.org/10.1088/0004-637X/715/2/1221
http://dx.doi.org/10.1109/SC.Companion.2012.55
http://dx.doi.org/10.1109/SC.Companion.2012.55
http://dx.doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1109/PDSW-DISCS.2016.007
https://doi.org/10.1137/120864672
https://proxyapps.exascaleproject.org

[16] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanaraman, Hao Lu,
Daniel Chavarrià-Miranda, Arif Khan, and Assefaw Gebremedhin. Distributed louvain algo-
rithm for graph community detection. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Vancouver, BC, Canada, May 2018.

[17] S. Habib et al. Hacc: Extreme scaling and performance across diverse architectures. Commun.
ACM, 60(1):97–104, December 2016. doi:10.1145/3015569.

[18] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. Advances in
neural information processing systems, 18, 2005.

[19] Van Emden Henson and Ulrike Meier Yang. Boomeramg: A parallel algebraic multigrid solver
and preconditioner. Appl. Num. Math., 41:155–177, 2002.

[20] https://asc.llnl.gov/CORAL benchmarks/Summaries/Nekbone Summary v2.3.4.1.pdf. Nek-
bone. URL: https://asc.llnl.gov/CORAL-benchmarks/Summaries/Nekbone_Summary_v2.
3.4.1.pdf.

[21] P. R. C. Kent et al. QMCPACK: Advances in the Development, Efficiency, and Application of
Auxiliary Field and Real-Space Variational and Diffusion Quantum Monte Carlo. J. Chemical
Physics, 152(174105), 2020. doi:10.1063/5.0004860.

[22] D. Kothe, S. Lee, and I. Qualters. Exascale Computing in the United States. Computing in
Science Engineering, pages 1–1, 2018. doi:10.1109/MCSE.2018.2875366.

[23] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[24] Samuel Lang, Philip Carns, Robert Latham, Robert Ross, Kevin Harms, and William Allcock.
I/O performance challenges at leadership scale. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–12, 2009. doi:10.1145/

1654059.1654100.

[25] Jianwei Li, Wei keng Liao, A. Choudhary, and V. Taylor. I/O analysis and optimization for
an AMR cosmology application. In Proceedings. IEEE International Conference on Cluster
Computing, pages 119–126, 2002. doi:10.1109/CLUSTR.2002.1137736.

[26] Ofir Lindenbaum, Uri Shaham, Erez Peterfreund, Jonathan Svirsky, Nicolas Casey, and Yuval
Kluger. Differentiable unsupervised feature selection based on a gated laplacian. Advances in
Neural Information Processing Systems, 34, 2021.

[27] Mark Miller. Design & Implementation of MACSio. Technical report, Lawrence Livermore
National Laboratory (LLNL), 2015. URL: https://macsio.readthedocs.io/en/latest/

_downloads/1f9c7922040985a619639fd5947d36ea/macsio_design.pdf.

[28] Nek5000 version 19.0. https://nek5000.mcs.anl.gov, December 2019.

[29] N.A. Petersson and B. Sjrogreen. Sw4 v2.0. computational infrastructure of geodynamics,
2017. doi:10.5281/zenodo.1045297.

[30] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput.
Phys., 117(1):1–19, March 1995. doi:10.1006/jcph.1995.1039.

60

http://dx.doi.org/10.1145/3015569
https://asc.llnl.gov/CORAL-benchmarks/Summaries/Nekbone_Summary_v2.3.4.1.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/Nekbone_Summary_v2.3.4.1.pdf
http://dx.doi.org/10.1063/5.0004860
http://dx.doi.org/10.1109/MCSE.2018.2875366
http://dx.doi.org/10.1145/1654059.1654100
http://dx.doi.org/10.1145/1654059.1654100
http://dx.doi.org/10.1109/CLUSTR.2002.1137736
https://macsio.readthedocs.io/en/latest/_downloads/1f9c7922040985a619639fd5947d36ea/macsio_design.pdf
https://macsio.readthedocs.io/en/latest/_downloads/1f9c7922040985a619639fd5947d36ea/macsio_design.pdf
https://nek5000.mcs.anl.gov
http://dx.doi.org/10.5281/zenodo.1045297
http://dx.doi.org/10.1006/jcph.1995.1039

[31] Selva Prabhakaran. Mahalanobis distance: Understanding the math with examples
(python). https://www.machinelearningplus.com/statistics/mahalanobis-distance/,
April 2019.

[32] D. Richards et al. FY18 Proxy App Suite Release. Milestone Report for the ECP Proxy App
Project. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA, 2018.

[33] David Richards, Omar Aaziz, Jeanine Cook, Jeffery Kuehn, Gregory Watson, Peter McCorquo-
dale, William Godoy, Jenna Delozier, Mark Carroll4, Courtenay Vaughan, and The ECP
Proxy App Team. Quantitative performance assessment of proxy apps and parents: Report
for ecp proxy app project milestone adcd-504-11. https://proxyapps.exascaleproject.

org/wp-content/uploads/2021/07/mainAssessment4.pdf.

[34] Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget, and
Kord Smith. Openmc: A state-of-the-art monte carlo code for research and development. Ann.
Nucl. Energy, 82:90–97, 2015. URL: https://doi.org/10.1016/j.anucene.2014.07.048.

[35] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

[36] L. I. Sedov. Similarity and Dimensional Methods in Mechanics. 1959.

[37] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data
with papi-c. In Tools for High Performance Computing 2009, pages 157–173. Springer, 2010.

[38] Aidan P. Thompson and Christian Robert Trott. A brief description of the kokkos implemen-
tation of the snap potential in examinimd. 11 2017. doi:10.2172/1409290.

[39] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. XSBench - the de-
velopment and verification of a performance abstraction for Monte Carlo reactor analysis. In
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, Kyoto, 2014. URL:
https://www.mcs.anl.gov/papers/P5064-0114.pdf.

[40] H. Vincenti and J.-L. Vay. Detailed analysis of the effects of stencil spatial variations with arbi-
trary high-order finite-difference maxwell solver. Computer Physics Communications, 200:147,
2016.

[41] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus
Day, Brian Friesen, Kevin Gott, Daniel Graves, Max Katz, Andrew Myers, Tan Nguyen,
Andrew Nonaka, Michele Rosso, Samuel Williams, and Michael Zingale. AMReX: a framework
for block-structured adaptive mesh refinement. Journal of Open Source Software, 4(37):1370,
May 2019. URL: https://doi.org/10.21105/joss.01370, doi:10.21105/joss.01370.

61

https://www.machinelearningplus.com/statistics/mahalanobis-distance/
https://proxyapps.exascaleproject.org/wp-content/uploads/2021/07/mainAssessment4.pdf
https://proxyapps.exascaleproject.org/wp-content/uploads/2021/07/mainAssessment4.pdf
https://doi.org/10.1016/j.anucene.2014.07.048
http://dx.doi.org/10.2172/1409290
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.21105/joss.01370
http://dx.doi.org/10.21105/joss.01370

	1 Executive Summary
	2 Modeling pre-Exascale AMR Parallel I/O Workloads via Proxy Applications
	3 Definition of More Accurate Performance Counter Groups
	4 Data Processing for Input to ML Stage
	5 Proxy/Parent Application Kernel Comparison
	6 Proxy Apps: Do they Predict Performance of Their Parents?
	7 Acknowledgments
	A Performance Counter Groups
	B Application Profiles

