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1 Executive Summary

Version 4.0 of the ECP Proxy App Suite is practically unchanged from the previous release. The
current set of proxies has proven useful for many aspects of benchmarking and co-design and we
see little reason to alter the suite.

Although there have been few changes to the ECP suite, the team has been hard at work in
other areas. In the area of Machine Learning (ML) we have now created a separate proxy suite
dedicated to this scientific applications of ML. The suite includes

miniGAN (Generative Adversarial Networks)

miniRL (Reinforcement Learning)

CRADL (inline inference)

Cosmoflow-Benchmark (Convolutional Neural Network)

MLPerf-DeepCam (Climate Segmentation Benchmark)

Section 3 contains more information about these proxies as well as the principles that are guiding
the development of the suite.

We have surveyed available proxies for several application domains including Computational
Fluid Dynamics, Quantum Chemistry, Quantum Computing Simulation, Molecular Dynamics,
Monte Carlo Transport, and Density Functional Theory to identify gaps in proxy coverage. Several
new proxy apps are either already available or will be released soon to fill these gaps. Section 4
provides full details.

Finally, section 5 reports on our continued collaboration with the ECP Continuous Integration
(CI) effort to use proxy apps to help identify problems and roadblocks to cross-lab CI. We have
also assisted the El Capitan Center of Excellence (COE) to stand up a CI system that will be used
to test releases of HPE and AMD software stacks. We hope that the COE effort can serve as a
model for ECP by showing how the Proxy App Team can work with AD and ST teams identify
critical features, kernels, patterns, etc. and incorporate them into a CI system that will help ensure
that Frontier and Aurora will provide those needed capabilities.

3



2 The Proxy App Suite v4.0

The ECP Proxy App Team released version 4.0 of the ECP Proxy App Suite on October 1, 2020
(https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/) . This release is practi-
cally unchanged from the previous release. The current set of proxies has proven useful for many
aspects of benchmarking and co-design and we see little reason to alter the suite.

Release 4.0 of the ECP Proxy App Suite includes the following proxy apps:

AMG Boomer AMG linear solver from Hypre. Includes both setup and solve phase. Sparse
matrices.

Ember A collection of communication patterns specifically designed for use with network simula-
tors.

ExaMiniMD Classical Molecular Dynamics from the CoPA co-design center. Features both a
simple Lennard-Jones potential and the computationally expensive SNAP potential.

Laghos High-order finite element Lagrangian hydro in 2D and 3D. Supports multiple orders for
thermodynamics and kinematics.

MACSio Generates complex I/O patterns consistent with multiphysics codes.

miniAMR 3D stencil with Adaptive Mesh Refinement.

miniQMC Simplified implementation of real space quantum Monte Carlo algorithms.

miniVite Louvain classification of a large distributed graph. Includes challenging communication
patterns as well as a non-trial amount of computation.

NEKbone Conjugate gradient solver for high-order spectral elements. Emphasizes small dense
matrix algebra.

PICSARlite Particle-In-Cell (PIC) kernels from the ECP WarpX project.

SW4lite High-order finite difference stencils on a structured grid.

SWFFT 3D distributed FFTs extracted from the HACC cosmology code.

thornado-mini Finite element, moment-based radiation transport; uses a semi-implicit, discon-
tinuous Galerkin method for a two-moment model of radiation transport.

XSBench Continuous energy cross section lookup from Monte Carlo neutron transport. Features
unpredictable memory access patterns into large data tables to stress memory system latency.

Because it is not possible to fully represent all aspects of the DOE or even the ECP workload
with a small collection of proxies, the Proxy App Team is also prepared to recommend other proxies
from our catalog of more than 60 proxies for specific modeling needs.

Our Proxy App Suite page now also includes a link to a page which lists proxies that are
likely to be of significant interest to the community. We have also provided pointers to a set of
representative problem inputs and parameters to help investigators run proxy apps with inputs
that represent production use cases.

Last, but by no means least, We are continuing our efforts to identify and highlight proxy apps
for scientific machine learning (ML) workloads. Version 3.0 of the suite introduced miniGAN, but
that was from from sufficient to represent the wide variety of ML use cases. We have now identified
enough ML proxies to form a small but growing specialized suite dedicated to this important
emerging area. Section 3 provides a complete description of the ML suite.
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3 Toward a Machine Learning Proxy Application Suite

Over the last few years we have witnessed explosive growth in the use of machine learning (ML)
techniques in practically every field of computing. Applications to problems as diverse as self-
driving cars, classifying videos, or online shopping recommendations have been widely publicized.
The HPC research community has also been active in seeking ways to use ML to benefit simu-
lation workflows, by improving simulation performance, accelerating workflows, improving model
accuracy, or optimizing resource allocation for simulations.

Because of the emerging importance of ML to scientific workflows, the ECP Proxy App Team
has recognized the need to collect a suite of proxy apps that represents how ML is applied to
problems of interest in DOE. We have observed that ML as applied to DOE science has unique
characteristics that are different from finding cat videos or following dotted lines. Capturing these
unique requirements in a proxy suite will help represent the ML workload for tasks such as co-design,
benchmarking, and algorithmic exploration.

Because ECP is focused on delivering production quality applications that will be ready to
run when exascale machines are delivered, there is less of a focus on ML techniques than there
is the more forward-looking DOE research community. This means that some if not most of the
proxies collected for this suite will be not produced by ECP-funded efforts. We think it is entirely
appropriate to reach out into the DOE research community to collect appropriate proxies and help
build a suite that will represent how ECP applications may evolve in the post-exascale era. We
appreciate the willingness of members of the DOE ML community to work with the ECP Proxy
App Team on this effort.

3.1 Principles of the Machine Learning Proxy Suite

Proxy applications are models that capture important features of a large application such as per-
formance critical kernels, programming models, communication patterns, etc. In the case of HPC
modeling and simulation applications, this typically translates to simplified codes that are intended
to be representative of large production codes. Proxies for ML applications require a somewhat
different approach than has been typical for DOE proxy apps. For example, ML problems fre-
quently present a data-centric approach rather than an algorithm-centric one. Therefore, it may
be necessary to perform simplification on the data set instead of the algorithm to derive an ML
proxy app.

ML proxies are different from traditional proxies in other important ways. One obvious dif-
ference stems from the fact that ML workloads often rely on a fairly complex set of third-party
dependencies such as PyTorch or TensorFlow. This is contrary to the usual principle of creating
simple-to-build proxies by avoiding dependencies. Because such dependencies are practically un-
avoidable in the ML space, it is fortunate that tools such as Spack are making it much easier to
manage dependencies. Another difference comes from the rapid pace of innovation and discovery
in ML. Algorithms and methods that are popular today can be easily discarded tomorrow, and
the search for better training methods or model representations is a major focus of effort in the
field. Hence, good proxies must be nimble to adapt to such changes, participate in the innovation
process, and help understand how such changes impact science workflows.

With these differences in mind, our intent is to select ML proxies for the suite based on two
sets of criteria. First, the suite must embody the core purposes and uses of proxy apps. Those
purposes are:

• Hardware and software co-design;

• Programming model exploration and innovation;
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• Development of numerical methods and algorithms;

• Optimization and benchmarking;

• Education.

Second, the suite must cover the breadth of the ML application space. The ML suite will en-
compass different ML proxy apps chosen to represent the three basic learning paradigms associated
with ML:

• Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning.

The goal of developing the ML proxy suite is to develop proxy apps that represent different
paradigms and cover different areas of research in DOE such as classification, regression, detection,
etc. Different neural networks associated with these paradigms such as Deep Neural Networks,
Generative Adversarial Networks, Variational Autoencoders, etc. will also be included. Along with
this, standard data sets for training and inference will be provided.

The following sections describe the proxies in the initial version of the ML suite. We expect
this list to grow and evolve as additional proxies appear and as we develop a better understanding
of the needs and use cases for ML proxies.

3.2 miniGAN

miniGAN [11] is a Generative Adversarial Network (GAN) proxy application that has been devel-
oped as part of ExaLearn and released through the ECP Proxy Application Suite. GANs [9,16,23]
are Deep Neural Networks (DNNs) that simultaneously train two models: a generator G and a
discriminator D. As the network trains, G produces increasingly accurate synthetic data, while
D attempts to distinguish the synthetic data from the original training data. Important for mini-
GAN’s use as a proxy application, GANs test a greater variety of layer types and training conditions
than standard convolutional or feedforward neural networks.

Relating to specific ECP applications, miniGAN aims to be a proxy application for related ma-
chine learning applications in cosmology, such as CosmoFlow [20] and ExaGAN [21], and in wind
energy, such as ExaWind [29]. miniGAN models the performance for training generator and dis-
criminator networks. The GAN’s generator generates plausible 2D/3D maps, and its discriminator
identifies fake maps. miniGAN is built on top of the PyTorch [22] and Horovod [28] packages and
has been developed so that optimized mathematical kernels (e.g., kernels provided by Kokkos Ker-
nels or vendor libraries) can be plugged into the proxy application to explore potential performance
improvements. A generator is provided to generate a data set (series of images) that are inputs to
the proxy application.

GitHub: github.com/SandiaMLMiniApps/miniGAN

3.3 miniRL

Reinforcement learning (RL) is a type of machine learning where an agent interacts with an envi-
ronment with the objective of maximizing a quantifiable notion of cumulative reward. An agent
in this context is a software process that provides an action, either explorative or exploitative, to
the environment. An environment in this context is usually a simulation that performs the action
provided by the agent and returns a new state, a reward, and a status that are together referred
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to as an experience. At any step, an agent can choose to either explore (sample the action space
using various techniques) or exploit (query a trained machine-learned model) in order to better un-
derstand the environment’s behavior and maximize reward. Any new experiences are incorporated
back into the machine-learned model (policy), thus helping the agent get better at the task over
time.

miniRL is a reinforcement learning (RL) proxy application derived from the Easily eXtendable
Architecture for Reinforcement Learning (EXARL) framework, which is being developed by the
ExaLearn Control project. The EXARL framework is designed to be used by researchers interested
in using RL for control and optimization of their applications or experiments without worrying
about the details of the RL implementations. Any RL problem consists of an agent (controller) and
an environment (system to be controlled), and EXARL uses an extension of the OpenAI Gym [7]
framework, which not only allows existing benchmark environments in Gym to be used but also
provides easy integration of new scientific environments. The agent is nothing but a collection of
RL algorithms with a state table or associated neural network architectures. EXARL also includes
distributed learning workflows, which define how the agent and environment interact with each
other.

Figure 1: Overview of EXARL architecture. Each actor has a copy of the model, which is updated
in every step and used to infer a new action given a state. The actor uses this action to compute
the next environment state and runs the Bellman equation to generate updated data. These data
are sent back to the learner for training the target model.

The architecture of EXARL is separated into learner and actors, as shown in Figure 1. A
simple round-robin scheduling scheme is used to distribute work from the learner to the actors.
The learner consists of a target model that is trained using experiences collected by the actors.
Each actor consists of a model replica, which receives the updated weights from the learner. This
model is used to infer the next action given a state of the environment. The environment can be
rendered/simulated to update the state using this action. In contrast to other architectures such as
IMPALA [13] and SEED [12], each actor in EXARL independently stores experiences and runs the
Bellman equation to generate training data. These training data are sent back to the learner, once
enough data is collected. By locally running the Bellman equations in each actor in parallel, the
load is equally distributed among all actor processes. The learner distributes work by parallelizing
across episodes, and actors request work in a round-robin fashion. Each actor runs all of the steps
in an episode to completion before requesting more work from the learner. This process is repeated
until the learner gathers experiences from all episodes.

miniRL uses the well known inverted pendulum or ’CartPole’ [15] environment along with
a DQN agent available in EXARL. In addition, it uses the asynchronous workflow distribution
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scheme to collect experiences from multiple environments running in parallel. miniRL not only
acts a benchmark application for the RL algorithms (agents), but also for different workflow dis-
tribution schemes. With the EXARL framework, it is easy to swap different environments, agents,
as well as learning and workflow distribution schemes for testing the performance. miniRL also
had CANDLE [31] functionality built-in, which allows for hyperparameter optimization using the
CANDLE Supervisor.

GitHub: Coming Soon

3.4 CRADL

Concurrent Relaxation through Accelerated Deep Learning (CRADL) performs inference, with a
trained machine learning algorithm, on mesh geometry data from hydrodynamics simulations. This
application models what the workflow would look like in hydrodynamics codes if manual relaxation
strategies were replaced with inline inference. The mini app provides many user options, and
optimizations, so they can easily determine the most optimal runtime configuration (batch size,
NVIDIA optimizations for PyTorch, parallelization strategy, etc.) for their chosen accelerator.
CRADL captures timing for the essential components that will be used in a full-scale application:

Timing is delivered for:

• Loading the machine learning model onto the accelerator;

• Loading mesh quality metrics data onto the accelerator;

• Performing Inference.

– Includes inference per cycle, and inference per cycle per node.

In addition to this, metrics are given to tell users whether their model’s computational cost can
be hidden for problems with either simple or complex physics in hydrodynamics codes.

Future versions of the miniapp will incorporate novel accelerators, like the CS-1 at Lawrence
Livermore National Laboratory. Options will also be introduced for users to load their own machine
learning models and data for profiling.

GitHub: https://github.com/LLNL/CRADL

3.5 Cosmoflow-Benchmark

Cosmoflow-Benchmark is an implementation of CosmoFlow 3D convolutional neural network for
benchmarking. It is written in TensorFlow [3] with the Keras API and uses Horovod [28] for dis-
tributed training. Deep learning is a promising tool to determine the physical model that describes
our universe. To handle the considerable computational cost of this problem, Cosmoflow is imple-
mented as a highly scalable deep learning application built on top of the TensorFlow framework.
CosmoFlow uses efficient implementations of 3D convolution and pooling primitives, together with
improvements in threading for many element-wise operations, to improve training performance on
Intel® Xeon Phi™ processors.

The CosmoFlow project aims to process large 3D cosmology datasets on modern HPC platforms.
The specific characteristics are as follows:

• The deep learning network described by Ravanbakhsh et al. [25] is adapted to a scalable
architecture for a larger problem size of 1283 voxels, and three cosmological parameters are
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predicted. Simulations are performed to generate the cosmology dataset with the 3 parameter
variations.

• Efficient primitives are implemented in MKL-DNN [2] for 3D convolutional neural networks,
which are used in an optimized TensorFlow framework for CPU architectures.

• The Cray Programming Environment’s Machine Learning Plugin (CPE ML Plugin) is utilized
to efficiently scale deep learning training on supercomputers via MPI.

• The single node and scaling performance improvements enables processing of a large 3D dark
matter distribution and prediction of the cosmological parameters ΩM , σ8 and ns with un-
precedented accuracy.

Github: https://github.com/sparticlesteve/cosmoflow-benchmark/

3.6 MLperf-DeepCam

MLperf-DeepCam is a PyTorch [22] implementation for the climate segmentation benchmark, based
on the Exascale Deep Learning for Climate Analytics codebase (https://github.com/azrael417/
ClimDeepLearn).

Climate change poses a major challenge to humanity in the 21st century. Tropical Cyclones
have caused the US economy over $200B worth of damage in 2017, and a range of stakeholders are
interested in a more careful characterization of the change in number and intensity of such extreme
weather patterns in the coming decades. In order to address these important questions, climate
scientists routinely configure and run high-fidelity simulations under a range of different climate
change scenarios. Each simulation produces tens of terabytes of high-fidelity output that requires
automated analysis.

DeepCam uses deep learning (DL) methods to extract high-quality, pixel-level segmentation
masks of weather patterns. The following describes the characteristics of the MLperf-DeepCam:

• The state-of-the art Tiramisu [19] and DeepLabv3+ [8] architectures are adapted to solve
segmentation problems on high-resolution, multi-variate scientific datasets.

• A number of system-level innovations are featured in data staging, efficient parallel I/O, and
optimized networking collectives to enable DL applications to scale to the largest GPU-based
HPC systems in the world.

• A number of algorithmic innovations are made to enable DL networks to converge at scale.

• Good scaling on up to 27360 GPUs can be seen, obtaining 999.0 PF/s sustained performance
and a parallel efficiency of 90.7% for half precision. The peak performance of 1.13 EF/s is
obtained at that concurrency and precision.

• The code is implemented in TensorFlow and Horovod; Therefore, the performance optimiza-
tions are broadly applicable to the general deep learning + HPC community.

GitHub: https://github.com/azrael417/mlperf-deepcam/
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4 New Proxy Applications: Closing Gaps

One of the missions of the ECP Proxy App Project is to identify gaps in the available proxies
relative to the overall ECP and DOE science workload. In connection with version 4.0 of the ECP
Suite, we have also examined a number of application areas and made plans to deliver proxies that
fill in missing modeling capabilities. This section describes those evaluations, the proxies that have
been created, and plans to deliver additional proxies in the future.

4.1 Computational Fluid Dynamics: ECP/FlowApps

The Department of Energy (DOE) supports a wide range of research activities in computational
flow physics, which, among other things, includes software development for massively parallel sim-
ulations using Eulerian (mesh-based) and Lagrangian (particle-based) methods. After having sup-
ported (and advised) researchers, over the years, on matters related to code development and
performance improvements on homogeneous computing platforms, we anticipate that the transi-
tion to a heterogeneous computing platform will not be smooth for the DOE scientific community.
A recurring question, related to code porting, that we are going to have to answer is “How do I
port my existing code that runs on a CPU-only platform, to a heterogeneous computing platform?”
And, having answered that, there is the next question: “Can you help improve the performance
of our code by getting it to utilize the GPUs better?” In an effort to prepare for this transition
and educate the DOE science base, we have conducted a survey of existing proxy apps in the flow
physics space.

The following mini-apps were built on Summit to assess the functionality that is usable in them,
and their suitability to serve as examples for converting codes to heterogeneous architectures.

1. CabanaPIC: a C++/Kokkos mini-app for particle in cell (PIC) computations which has a
structured mesh framework that can be used for other mesh-based spatial discretizations.

2. CloverLeaf3D: a Fortran mini-app, which is the 3D extension to the CloverLeaf (2D) mini-app,
that solves the compressible Euler equations on a structured mesh.

3. miniAero: a C language based compressible Euler/Navier-Stokes finite-volume solver where
the equations are discretized on an unstructured mesh.

4. miniAMR: provides a limited C framework for stencil-based computations, on a structured
mesh, for problems that can make use of adaptive mesh refinement.

5. miniFE: a C++-based MPI/CUDA/OpenMP code base for implicit finite-element and finite-
volume codes.

6. NEKbone: a Fortran 77 (and C) mini-app that solves the Poisson equation for pressure in the
incompressible Navier-Stokes (NS) equations. The NS equations are solved using a continuous
Galerkin spectral-element method.

It is important to note that none of the proxies listed above solves a complete flow physics
problem that is representative of the capability flow simulations that researchers carry out at the
Office of Science and NNSA DOE laboratories. We believe that a proxy that solves a complete
flow problem will be much more effective as an example of write and optimized flow codes for het-
erogeneous architectures. In an effort to prepare for this transition and educate the DOE science
base, we propose the development of ECP/FlowApps to show case the application of a discretiza-
tion technique applied to a canonical flow simulation on a heterogeneous computing platform. The
ECP/FlowApp is intended to be the smallest code (with minimal dependencies) that is represen-
tative of a target flow physics simulation, with a specific discretization method, and with MPI
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implementations that additionally use one or more shared-memory parallelization paradigms (e.g.,
Kokkos, OpenMP 4.5+, DPC++, etc.).

The primary goal of the Flow-Apps that we propose is to demonstrate improved parallel perfor-
mance, and portability of CFD codes via the use of the Kokkos and OpenMP 4.5+ parallelization
paradigms, in conjunction with MPI (i.e., MPI+Kokkos and MPI+OpenMP 4.5+). They also will
serve as examples to demonstrate the modifications that are needed to transform existing MPI
codes (for homogeneous platforms) to take advantage of shared-memory parallelism on the vari-
ous DOE exascale platforms. While ideally, a code developer should be able to use/modify these
ECP/FlowApps to do their own larger scientific simulations, the aim of developing FlowApps is to
also educate the users on how to use one of these Apps that is closest to, say, the discretization
they are using, and understand what changes need to be made to transform their own codes to run
on a heterogeneous computing platform.

4.1.1 Proposed ECP/FlowApps

Since many flow physics projects aim to do direct numerical simulations (DNS) and/or large eddy
simulations (LES) of compressible and incompressible flows, and since the geometry of the com-
putations’ domains are simple enough to be created within the solvers, we propose the following
ECP/FlowApps for simulating compressible/incompressible turbulent flows:

1. Incompressible Navier-Stokes DNS code for simulating forced isotropic turbulence in a triply
periodic box. In many ways, such a code is a driver for a 3D FFT library (such as FFTW).
There are quite a few Fortran language based, MPI parallelized, forced isotropic 3D turbulence
(FIT3D) codes based on the slab (1D) and pencil (2D) domain decompositions that are
required for parallelizing this problem. However, there is no openly available version of
FIT3D that can run on GPUs. So, the intent is to create such a FlowApp that can run on
heterogeneous computing platforms, with one or more shared-memory parallelization options.
There is no existing ECP/mini-app for a pseudo-spectral code that can run on a heteroge-
neous computing platform. Hence, this Flow-App will be created from scratch. Timeline for
completion: March 2021.

2. Incompressible higher-order Navier-Stokes DNS code for simulating wall-bounded flows. This
FlowApp is a proxy for open-source higher-order CFD solvers, such as Nek5000, PHASTA
(incompressible solver).
The NEKbone ECP/mini-app that represents the Poisson solver for the pressure equation
in an incompressible flow solver, makes use of only MPI. There is no GPU capability in
NEKbone, and it cannot run on a heterogeneous computing platform. Hence, this Flow-
App will be an incompressible flow solver (for velocity and pressure) that will be based on
NEKbone. Timeline for completion: September 2022.

3. Structured-grid Finite-Difference/Finite-Volume Solver for Compressible Flows with Shocks.
This FlowApp is a proxy for some export-controlled codes (e.g. FDL3DI from AFRL/NASA),
and other non-open-source codes that are used by a variety of researchers for simulating
hypersonic flows.
This FlowApp will be based on CloverLeaf3D. Timeline for Completion: September 2021.

4. Unstructured Finite-Element/Finite-Volume Solver for Compressible Flows with Shocks. This
FlowApp is a proxy for the existing open-source codes, PHASTA and SU2.
We will base this code on miniFE and miniAero. Timeline for Completion: March 2022.

11



4.2 Proxy Applications for Quantum Chemistry

Quantum chemistry has long been a prime consumer of compute cycles at DOE HPC facilities.
Methods such as Hartree-Fock (HF) and density functional theory (DFT) place high demands
on floating-point computation while requiring comparatively little in terms of input and output.
Thus, quantum chemistry seems inherently suited to exploiting the increased computational power
available on new architectures. However, the memory requirements of HF and DFT are quadratic in
the problem size and so their replicated data forms are limited to perhaps a few thousand processors
before the node memory is exceeded and distributed data forms incur significant communication
overheads that limit the parallel efficiency. On the other hand, many-body approaches in which
a problem is subdivided into ‘fragments’, typically along chemical lines, before treating at the
desired level of theory, are inherently scalable and have gained popularity for their ability to scale to
much larger compute partitions. Examples include the fragment molecular orbital (FMO) method.
Nevertheless, FMO can encounter communication and load-balancing issues at the limits of its
application. Other methods such as coupled cluster (e.g., CCSD(T)) become memory-bound at far
smaller applications than even HF or DFT.

In terms of software, the field of quantum chemistry is dominated by large packages—GAMESS,
NWChem, Q-Chem, MolPro, Gaussian, to name a few—with millions of lines of code implementing
many methods in complex execution modes. Over the years a wide array of programming models
and techniques has arisen in response to the emerging trends in the computing environment. As
computers become larger, the gap between the compute performance and the storage (memory,
disk) and bandwidth (communication and/or disk speed) capabilities becomes ever wider. Many
fields have responded by strategically re-computing certain factors where they would previously
have stored them. In quantum chemistry, the so-called “direct” approaches involve re-computing
the electron repulsion integrals on demand as they became too numerous to store for applications
that are large enough to consume the compute capability. Other common practices include the
re-ordering of compute loops and ignoring the exploitation of permutational symmetries to yield
even-sized tasks, in order to expose parallelism. Parallel global address space (PGAS) models have
also been used to implement distributed data algorithms that exploit the large aggregate memory
available with massively parallel computers. PGAS models are especially successful when they can
be combined with sophisticated asynchronous messaging capabilities that enable the communication
overheads to be overlapped with computation. Again, the large compute load of quantum chemistry
is an advantage, behind which sizable communication overheads can be hidden.

Quantum Chemistry packages face further challenges at the exascale. Despite the already com-
plex array of programming models, the next generation of supercomputers will present paradigms
such as heterogeneous computing (GPUs) and multi-threading that the community has yet to fully
embrace. In this respect, proxy applications would be extremely useful for studying the computa-
tional aspects of the applications without the complexity of the entire package. Proxies can also
be used to isolate and study algorithmic motifs that can suggest how a given application could be
implemented.

While it is clear that a great many such proxies are possible for a field such as quantum chem-
istry, the current suite has relatively few, and none represent a PGAS model. At present, the ECP
Proxy Applications catalog has three proxies that come under the heading of quantum chemistry:
miniQMC and the recently added GAMESS-HF-Proxy and GAMESS RI-MP2 MiniApp. The for-
mer is based on QMCPACK, where ‘QMC’ refers to quantum Monte Carlo—a sub-field of quantum
chemistry in which the energy expression is integrated stochastically. Thus, QMC is algorithmically
quite different from the mainstream quantum chemistry where the integrals are computed analyti-
cally. The latter two proxies are derived from the GAMESS package, as the names suggest, the first
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of which is briefly discussed below. The second computes the Møller-Plesset second order (MP2)
perturbation theory energy using a resolution of the identity (RI)—a type of approximation that
needs far less memory than the conventional MP2 algorithm. RI-MP2 theory is used to estimate
the electron correlation energy, providing a systematic improvement over the Hartree-Fock model.
RI-MP2 is often used in conjunction with methods such as HF and FMO.

To make further headway into this space, we have identified two more proxies to help ensure
that the current suite covers ECP workloads.

4.2.1 Basic Hartree-Fock Proxy

For computation, there is general agreement that Hartree-Fock—the entry-level method of main-
stream quantum chemistry—provides the most obvious starting point. HF is a central part of most
quantum chemistry packages and the starting point for more advanced approaches in molecular
orbital theory. HF is algorithmically similar to DFT. The kernel of HF is dominated by the eval-
uation of electron repulsion integrals (ERI), whose overall cost scales as the fourth power of the
problem size. As stated above, the ERI are usually not stored but contracted into the elements of
a matrix subsequently input to a generalized eigenproblem. The high cost of ERI has prompted
the development of many methods for computing them (for example, Rotated Axis, Rys Polyno-
mial, Obara-Saika, PRIZM, and so on), almost as numerous as the packages themselves. Indeed,
the ERI code is often the key distinguishing characteristic of a quantum chemistry package from
the software perspective, into which its primary functionality is interfaced. An example is the
GAMESS-HF-Proxy mentioned above, which makes use of the LibInt ERI code.

When it comes to assessing computational performance, that of the ERI code can be a complex
function of the input molecular system (variables include the degrees of contraction and angular
momentum of the Gaussian basis functions, and the interatomic distances). In terms of software,
the ERI code itself can be large and, in the context of a proxy, it is debatable whether it constitutes
a “minimal dependency”. However, concerns over both the compute performance and the software
dependencies can be resolved if the HF proxy is based on computing ERI over the basic ‘s-type’
Gaussians for which there is just a single formula. Such an approach provides:

1. A generic starting point that is not tied to any particular quantum chemistry package or ERI
code, thus complementing the existing GAMESS-HF-Proxy.

2. Versatility: input cases can be tuned to model different computational loads.

3. Simplicity: the single formula can be easily re-implemented for different programming models,
languages, and hardware.

This ‘Basic HF Proxy’ would quickly allow measurements of floating-point efficiency, GPU speedup,
offloading, and other performance data, to inform the community and vendors. Further validations
of fidelity can be made by comparison with more general codes and, if necessary, the proxy suite
can be further augmented with more representative ERI code(s).

Reduced to its minimal functionality, the Basic-HF-Proxy computes the two-electron term of
the so-called Fock matrix from a guessed (or input) density matrix corresponding to a system of
atoms whose coordinates are read in at the start. Note that this is the compute kernel of the
popular DFT method. Furthermore, the proxy could also be used as the compute kernel of other
quantum chemistry proxies, such as that described next.
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4.2.2 PGAS-FMO Proxy

A qualitatively different aspect of performance is concerned with the communication overheads, and
the overlap of communication with computation, that occur in distributed fragmentation methods
such as the FMO implementation in the ECP code, GAMESS. As stated above, FMO is a popular
method on supercomputers owing to its inherent scalability/concurrency. However, in its entirety
the FMO method is typically highly complex. The implementation in GAMESS has approximately
200 input settings and options. Thus, one aim of a proxy would be to minimize this complexity
by reducing FMO to its most basic computation and communication tasks. In this PGAS-FMO
proxy, as with the Basic HF proxy, a set of atomic coordinates corresponding to the fragments
is input at the start along with a density (or densities) which subsequently populates the PGAS
array. Following this, individual compute-processes (or groups) obtain the densities of remote frag-
ments via one-sided messages (GET/PUT) and calculate the contribution to the electron repulsion
potential of the corresponding fragment at the desired level of theory. By choosing HF as the
level of theory, the Basic HF Proxy can be used as the compute kernel. Since the potential energy
for separated monomer fragments, corresponding to the first term of the many-body expansion, is
computed, an FMO-1 calculation is performed. Levels higher than 1 successively improve the N-
body approximation but are algorithmically similar, the main difference being the (larger) fragment
definitions.

In GAMESS, FMO relies on the Distributed Data Interface (DDI)—a Parallel Global Address
Space (PGAS) model akin to Global Arrays in NWChem—to implement the PGAS scheme. In the
proxy, a minimal library based on the same data-server model as DDI, but independent of DDI,
and sufficient just to service the needs of the proxy, is implemented. This minimal PGAS library
could be instructive to those considering using such an approach to extend their applications to
the high levels of concurrency available at the exascale, as the rest of the proxy could be.

4.2.3 Summary of proxy application current development status and timelines:

1. Basic-HF-Proxy (compute kernel)

(a) Coding is complete and validated.

(b) Needs MPI parallelism, GPU offload, and benchmarking data.

(c) Time to delivery: 3 months.

2. PGAS-FMO-Proxy

(a) PGAS (parallel) mini-library, coding is done.

(b) Basic FMO code is complete and tested. The number of fragments per rank/group is
currently fixed, needs extending to variable fragments per group.

(c) Needs offloading, benchmarking.

(d) Time to delivery: 6 months.

Looking ahead, additional proxies could be developed in the future to cover the workloads of
other popular quantum chemistry methods such as coupled cluster (CCSD(T)) and configuration
interaction (CI), which both have memory-bound kernels.

4.3 Simulation of Quantum Computing: QTensor-mini

Quantum Computing has attracted significant research interest in DOE as a technology that will
help carry us beyond Moore’s Law. Because qubits are difficult to build, simulations of the behavior
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of quantum computers provide an important contribution to the research in this field.
The Quantum Approximate Optimization Algorithm (QAOA) is the most studied quantum

optimization algorithm and is considered to be the prime candidate for demonstrating quantum
advantage. There is a worldwide race underway amongst top quantum information science re-
searchers to find combinatorial optimization problems, and their instances, that run efficiently and
faster on quantum devices rather than on classical computers—the so called quantum advantage.
A demonstration of this would be a significant achievement in computational science.

The Argonne-developed quantum simulator QTensor is written using a tensor network contrac-
tion technique, which is exceptionally well suited for simulating short quantum circuits like QAOA
quantum circuits. For example, QTensor is much faster than simulators provided by vendors like
IBM and Google, which are using an older state-vector simulation approach. It is worth noting
that QTensor aims to be able to perform effectively on a wide array of HPC hardware (especially
exascale machines), to best suit the needs of anyone studying QAOA circuits.

We surveyed available proxy apps and found that proxies capable of modeling the memory
and time costs of tensor network contractions are lacking. Tensor networks provide an abstract
representation of higher order tensors which effectively reduces their often prohibitive memory
requirements for storage. However, this reduction in storage cost potentially requires prohibitive
costs in time and space for evaluation, depending on the structure of the network representation.
We are creating QTensor-mini to fill this gap.

Although QTensor-mini is primarily intended to represent aspects of QTensor, it is important to
note that tensor networks have widespread applications in both Scientific Computing and Machine
Learning. In Machine Learning and Statistical literature, one example of their use is found in
Probabilistic Modeling. Tensor networks are the key to the evaluation of probabilistic graphical
models, which are used to reason about probabilistic systems with complex dependency structures.
Another example may be found in Constraint Satisfaction literature, where tensor networks may
be used as efficient solvers for some CSP instances.

QTensor-mini will help achieve QTensor’s goal of widespread success on HPC hardware (espe-
cially for upcoming exascale supercomputers Aurora and Frontier). The proxy application enables
efficient exploration of the relevant design space, and in addition, serves as a compact, sharable
demonstration of tensor network based algorithms. To target both homogeneous and heterogeneous
computing platforms, we are developing our proxy app to target both CPU and mixed CPU/GPU
platforms. QTensor-mini requires few dependencies, needing only a BLAS library for each of the
targeted processors.

QTensor-mini will also be representative of ExaTn, a high performance tensor library in devel-
opment at Oak Ridge National Lab. The QTensor team is working closely with ExaTn developers
to target upcoming exascale supercomputers.

4.3.1 Formulation of the Problem

QTensor represents quantum circuits as tensor networks. As an example, we take a circuit and
convert to a graph using a graphical representation of gates. We then contract the graph vertex-
by-vertex. Vertex contraction removes a vertex from graph and connects all its neighbors.

The cost of each vertex contraction operation depends exponentially on number of neighbors
of the vertex. This number is known in graph theory as the contraction width and the minimum
value of it over all possible contraction orders is known to be treewidth + 1.

Our goal is to minimize resource requirements for the contraction of the full circuit to maximize
the size of the simulated quantum circuits in terms of both qubits and gates. The simulation
is effectively a memory-bound problem, since we have to store large complex-valued tensors that
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represent intermediate states of the circuit. The memory required to store a tensor with r indexes
is M = 2r+4.

The simulation consists of many elementary steps, each step dependent on the previous. Each
step is a contraction operation of some set of tensors over some index i0. This operation can be
represented as

R =
∑

i0,i1,...,iK

T 1
i0...ir1

T 2
i0...ir2

Tm
i0...irm

(1)

where our set of tensors has m tensors.
The size of resulting tensor Rj at each step varies from a handful of bytes to gigabytes in a

single simulation. Computation cost scales as 2r where r is the rank of a tensor, and implementing
advanced optimization techniques provides benefit only for large tensors with rank approximately
of r ≥ 20.

4.3.2 Objectives of QTensor-mini

We identified the most time-consuming and representative steps in QTensor (like pairwise-tensor
contraction in the bucket (Eqn. 1). We extracted the corresponding code and packaged it as the
proxy app QTensor-mini. Our initial objective was to evaluate the performance and optimize the
code for CPUs. This work is done and it will be released in October 2020.

The next step will be to port QTensor-mini to various GPU platforms like NVIDIA GPUs, AMD
GPUs, and Intel GPUs with the aim to get ready QTensor working on existing supercomputers and
upcoming exascale supercomputers. This work will be done over the course of 2021. In 2021 and
2022, we will introduce refined solvers for determining optimal contraction order in the network.

QTensor-mini is currently under review by the Argonne legal team, and we expect it to be
officially released in October of 2020.

QTensor-mini will be available in Github.

4.3.3 Timeline

March 2021: The official release of the proxy app will be in October of 2020. By March 2021, we
will implement at least two backends to run on existing GPU platforms (NVIDIA and AMD).
The GPU backends in consideration will include CuBLAS, ArrayFire, and, further down the
line, Intel’s in-beta OneAPI. We will also optimize and further benchmark existing backends.

September 2021: We will develop the backend for Intel GPU (Xeon Xe). Our prime candidate
is MKL version using OneAPI interface. Once XLA support arrives for Intel GPUs, we will
create further backends using popular tensor packages such as JAX and PyTorch.

4.4 Molecular Dynamics and Biological Applications

Classical Molecular Dynamics (MD) is an important component of the DOE workload, and several
proxy apps have been created to represent common MD codes. However, all of the the most widely
used MD proxies including CoMD, miniMD, and exaMiniMD are based on use cases drawn from
Condensed Matter Physics and Material Science. In contrast, use cases from Biology are not as
well represented in the proxy app space.

Because ExaMiniMD is a member of the ECP Proxy App Suite, and because most MD prox-
ies are similar in design, we made exaMiniMD the focus of our evaluation. ExaMiniMD is de-
signed to represent major computational features of all-atom MD simulation, that is the floating-
point intensive pairwise atom-atom nonbonded interactions. When applied to biological problems,
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MD typically requires bonded interactions and long range interactions and has tended to employ
force/energy lookup tables. We decided to evaluate whether it would be beneficial to add these
additional features to exaMiniMD to better support modeling of biological MD workloads.

Bonded interactions are general features of both material science and biological MD simulations.
Although typically they affect overall performance by only a few percent and therefore not an
HPC concern, including these terms presents a more realistic picture of biological modeling. To
investigate how bonded force calculation terms affect the overall ExaMiniMD code structure, size,
and performance we recycled the bonded force classes of LAMMPS to create a version of exaMiniMD
that included both particle domain decomposition and MPI.

As the work to add bonded terms to ExaMiniMD progressed, we soon found that the code
became unnecessarily complex in terms of both code size and inadvertent influence on the existing
nonbonded force calculation. Generally bonded terms include bonds, angles, dihedrals and im-
proper dihedrals. The corresponding neighbor list construction involves numerous array/pointer
operations and generates complex atom connectivity. Moreover, due to the complex atom-atom
exclusion relationships generated by bonded lists, the existing nonbonded force calculations have
to be modified significantly. Without bonded terms, the periodic neighbor-list construction of non-
bonded calculations only depends on atom-atom distance and therefore is programmed in a few
simple arrays/pointers; however, the 1-2, 1-3, 1-4 and modified 1-4 exclusions due to bonded terms
generate multiple branches in nonbonded neighbor-list construction and involve large number of
array/pointer operations. Extra filters of exclusion have to be applied to the original simple atom
distance evaluation. These atom-atom exclusions also are force field dependent, further complicat-
ing their implementation in ExaMiniMD.

It soon became evident that our prototype implementation of bonded terms threatened to
double the size of ExaMiniMD. This significant increase of code size contradicts the original design
purpose of a proxy app—code compactness and focus on the major performance concerns. Taking
into account the significantly expanded code size and complexity and the modest contribution of
bonded terms to total run time, we decided to abandon the effort.

Long-range forces in MD have typically been calculated using the Particle Mesh Ewald (PME)
or Particle-Particle-Particle-Mesh (P3M) algorithm. These algorithms involve many-to-many com-
munications and intensive floating-point operations. They also require an optimized FFTW library
and efficient SIMD/SIMT implementations. However, such long-range terms account for only about
∼ 5% of run time. Moreover, in recent years there have been several scalable algorithms designed
to replace PME/P3M and further reduce the cost of long-range computations. Many MD codes
designed for biological applications like NAMD, Gromacs, etc., have adopted these novel but eco-
nomic algorithms to improve code speed. Based on these considerations, as well as our negative
experience with bonded terms, we elected not to pursue adding long-range terms to exaMiniMD.

Finally, we evaluated the prospects to add a force/energy lookup table to exaMiniMD. Based
on discussions with several leading MD code developers, we determined that there has been a
trend toward utilizing the SIMD/SIMT programming to directly compute nonbonded force/energy
instead of relying on tables. Once again, it appears that there is no need to add features to
exaMiniMD.

Overall, we have determined that while most MD proxies do not explicitly contain terms and
algorithms that are needed for biological applications, the current ExaMiniMD strikes a good
balance between representing the major performance concerns while maintaining compact code.
Adding capabilities to exaMiniMD is likely to expand code size and/or increase complexity while
offering only minor or negligible performance implications for future architecture study.
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4.5 Monte Carlo Particle Transport for Reactor Analysis

The use of Monte Carlo (MC) methods for the design and analysis of nuclear reactors has become
increasingly promising in recent years. MC methods offer an extremely accurate approach to reactor
simulation since they can represent the geometry and physical phenomena nearly exactly; however,
they come with significant computational challenges.

In the ECP ExaSMR project, the goal is to carry out coupled MC neutronics and CFD simula-
tions of a 3D full small modular reactor (SMR) core. Two MC neutron transport applications are
used in the project, Shift and OpenMC. There are several proxy apps that model important char-
acteristics of the full MC transport applications in the context of reactor analysis. These proxies
mainly represent two computational challenges: the calculation of the macroscopic cross section,
and the random branching control flow of the applications.

4.5.1 Continuous-Energy Cross-Section Lookups

One of the key performance bottlenecks in Monte Carlo reactor simulation is random memory
accesses into large read-only tables of tabulated cross-section values. These cross sections determine
the probabilities of various interactions and are sampled at each step in a particle’s trajectory to
determine the next event that the particle will undergo. Cross-section data is needed for each
nuclide in the problem. So-called continuous-energy cross sections are tabulated at a huge number
of energy points to resolve the detailed structure of resonances.

One of the characteristics of reactor transport is a large nuclide inventory. When the fuel
depletes, hundreds of nuclides build up in the fuel region. Continuous-energy cross sections for all
nuclides at a single temperature can require a few gigabytes of memory. During the simulation,
accesses to this data are extremely frequent (every time a particle changes energy or moves to a new
material) and essentially random. Because of this, reactor simulation becomes a memory latency
bound problem. Because of the importance of cross-section lookups in MC simulations, multiple
proxy apps have been developed to represent the lookups.

XSBench XSBench represents continuous-energy cross-section lookups but ignores particle track-
ing. Even though XSBench uses synthetic cross-section data and generates energies and materials
randomly, the data access patterns faithfully recreate those found in production applications, and
the multicore scaling efficiency and floating-point calculation rates are very similar. For Shift and
OpenMC, XSBench is a highly representative proxy since it successfully models the most compu-
tationally expensive kernel of the full simulation.

RSBench RSBench represents the multipole method of calculating continuous-energy cross sec-
tions. This method has a much lower memory footprint, only requiring megabytes of data (instead
of gigabytes), and improved data locality. However, memory savings come at the cost of significantly
increased floating-point computation. Because multipole cross sections are more compute intensive
and less memory intensive, they are potentially promising for next-generation architectures.

With both RSBench and XSBench, the macroscopic cross-section calculation, the key bottleneck
of Monte Carlo reactor simulation, is very well represented.

EBMS EBMS is another proxy in the ECP extended catalog that addresses the challenge of
doing frequent random memory accesses from large cross-section tables. It is a prototype that
implements a proposed algorithm for parallel Monte Carlo neutron transport codes that would
significantly reduce the on-node footprint of cross-section memory. Rather than replicating the

18



large cross-section tables on every node, a memory-server model is employed in which the data
resides on a remote set of disjoint processors. The cross-section data is partitioned into energy bands
and distributed across nodes. Taking advantage of the fact that most neutrons move from high
to low energies during their lifetime (with only occasional upscattering), a new tracking algorithm
is adopted in which each processor starts by loading the highest energy band and tracking each
particle until it leaves that band. The next-highest band is then loaded, and the tracking proceeds
in this way until all the particles have been absorbed. While this algorithm demonstrates a possible
path forward for these memory-bound codes, it has not actually been implemented in any of the
full applications, and there are not currently any efforts to do so.

4.5.2 Particle Tracking

Another challenge to getting good Monte Carlo performance on next-generation systems is the
complex branching execution path associated with tracking the particles. MC neutronics codes
have traditionally used a ‘history-based’ approach where each particle is tracked through randomly
selected interactions until it is absorbed or escapes from the system. Because individual neutrons
do not interact with each other, the algorithm is straightforward to parallelize. Each thread tracks
a particle from birth to death as it undergoes a series of collisions and surface crossings until it is
eventually killed. Unfortunately, this fundamentally MIMD approach doesn’t map well to SIMT
parallelism in GPUs because of the high branching and high latency.

‘Event-based’ methods are an alternative to the history-based approach which attempt to exploit
the vectorization capabilities of the GPU. Instead of tracking each particle from beginning to end,
particles experiencing the same event type are processed together. Event-based processing helps
avoid thread divergence on the GPU, but suffers from higher overheads associated with sorting
particles by event type. While the history-based approach typically leads to a single large GPU
kernel, an event-based approach will have multiple specialized kernels with less complexity which
may be able to achieve higher occupancy. Most of the recent work on adapting MC transport to
GPUs has focused on event-based algorithms.

At least two proxies have been designed to capture the branching control flow of MC applica-
tions, with the main motivation being to explore different tracking algorithms on the GPU. Both of
these proxies employ multigroup cross sections to reduce the memory footprint and computational
cost of cross-section lookups.

ProfugusMC ProfugusMC is a multigroup Monte Carlo solver that was designed to mimic the
algorithms and design of Shift. It uses a limited geometry and small number of tallies, and runs
on one predetermined transport problem.

ProfugusMC has been used to explore the tradeoffs of history-based and event-based approaches
on the GPU. With this proxy, the best performance on the GPU is achieved using a modified
history-based method where Particle histories are truncated after a fixed number of collisions and
the surviving particles are consolidated and launched in a new kernel. Curiously, performance
in Shift is quite different. With continuous-energy cross sections the event-based algorithm far
outperformed a history-based approach. This indicates that while ProfugusMC is very useful for
exploring algorithmic details, not all the characteristics carry over from multigroup to continuous-
energy, and the performance issues can be very different between the proxy and the full application.

Quicksilver Quicksilver is a proxy intended to approximate the performance of the production
code Mercury. It was created to help inform refactoring for GPUs and to allow for collaboration
since Mercury is export-controlled. Like ProfugusMC, it aims to capture the random branching
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nature of the control flow. Quicksilver uses multigroup cross sections, has simplified physics, ge-
ometry and meshing, and uses a reduced number of tallies. Unlike ProfugusMC, Quicksilver does
capture Mercury’s domain decomposition, using MPI for inter-node communication. It also allows
for flexible inputs. Quicksilver takes a history-based approach for running on the GPU, where the
entire tracking loop is converted into a ‘big’ GPU kernel.

4.5.3 Possible Gaps

One challenge that is not addressed by existing proxy apps is the large memory footprint of tallies.
Tallies are running sums of events such as collisions or particle tracks that are used to compute
physical quantities of interest such as the flux or reaction rates. Design calculations for a reactor
core can involve 200–300 fuel pins in a typical fuel assembly and around 200 assemblies in a reactor
core. with 100 axial and 10, several reaction rates and hundreds of nuclides in the fuel, tallies can
reach hundreds of gigabytes or even terabytes of memory.

One possible compromise when dealing with the limited on-node memory when tallying is the use
of NVRAM to store tally data. Unlike cross-section data, tally data is not needed for determining
the random walk of the particle at each step, so it could be stored remotely. It could be worth
investigating the feasibility of using NVRAM to enable design calculations for reactor cores while
avoiding domain decomposition.

4.5.4 Progress and Next Steps

Currently, there are no proxy apps that isolate the tallying component of a Monte Carlo transport
reactor simulation. It could be useful to have a simple tally proxy to explore problems that arise
when handling the large, fine-grained tallies that are required for nuclear reactor design and analysis.
Such a proxy could help to assess whether it is possible to use NVRAM for tallies or give early
insight to potential performance bottlenecks such as the tally synchronization among nodes at the
end of each cycle.

A simple code to mimic the tallying component of Monte Carlo transport is being implemented.
The goal is to extract the basic tally loop and capture the volume and frequency of tally data
written. The relevant tally bins are updated in a manner similar to the full application. Further
work and verification ongoing to ensure the performance characteristics of the full application are
captured. The current version is CPU-only, but a future version using OpenMP 4.5 for GPU offload
is planned. The time line for completing this next version of the code is May 2021.

An analysis of the tally write pattern for detailed full-core reactor models has been performed
using the OpenMC Monte Carlo particle transport code to gain an understanding of the volume
and frequency of the data written. The distribution of the number of collisions and tracks per
particle in both fuel and non-fuel materials has been studied in order to quantify the number of
times each particle scores to a tally, and the amount of data written at each tallying event has
been calculated for the physical quantities that would typically need to be tallied in this type of
simulation. By characterizing the tally write pattern, we can try to capture it outside the full code
in a simple way. We can also use this information to gauge whether the use of NVRAM is a viable
option given the requirements of tallying in these calculations.

The next step in exploring the potential of NVRAM would be to do some simple testing of the
write performance on NVRAM. Following this, we would perform some write benchmarking in the
context of the highly simplified MC tally proxy, using data sizes and patterns that approximate
those of a real simulation. By comparing this to the equivalent on RAM, or to the simulation time
for other parts of the code, we can decide whether it is worthwhile to pursue this idea further. The
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time line for completion for this work is February 2021.

4.6 Density Functional Theory: minq

Computational material science is key for the understanding and discovery of materials in a large
number of energy applications, from the development of batteries and solar cells, to characterizing
matter under extreme conditions. Because of this, the simulation of materials is one of the main
applications in supercomputing workloads.

When accurate simulations of materials are required, it is necessary to solve the Schrödinger
equation of Quantum Mechanics under some level of approximation. The most popular of such
approximations is density functional theory (DFT) [10] due to its moderate computational cost and
reasonable accuracy, in comparison with other methods like Quantum Monte Carlo or many-body
perturbation theory. This means that each year, a significant fraction of the DOE supercomputing
time is spent in DFT codes like VASP, Quantum Espresso, or Gaussian.

Despite its importance, DFT codes have been slow to develop support for modern GPU ar-
chitectures. GPU implementations of DFT are scarce, usually not much faster than their CPU
counterparts [18, 26], and normally are limited to a single node or small number of GPUs [5, 30].
This is explained in part by the complexity of DFT, but also to the lack of library support. DFT
codes rely on parallel linear algebra routines to run efficiently in parallel, a role that ScaLAPACK
has provided quite efficiently for CPUs [17]. For GPUs, SLATE [14], under development at the
University of Tennessee and sponsored by the Department of Energy, promises to fulfill that role.
However SLATE is in the development phase and offers only basic implementations of the operations
required for DFT.

In order to study how SLATE works for DFT, we have developed minq. Minq is a proxy app
to model the computationally intensive parts of a DFT code based on SLATE. In particular, it
implements the linear algebra operations that usually dominate the computational time for large
systems. These same operations are usually the bottleneck when DFT is parallelized over a large
number of processors. The objective is to provide a simple code, with a simple interface, that can
serve as a sample of what are the matrix sizes and operations that are relevant for DFT to library
and hardware developers.

Minq is based on the inq DFT code currently developed at LLNL, which is based on the expe-
rience gained in the development of the Octopus [6] and Qball [27] codes. As such, the operations
that minq implements are quite universal and appear in most plane-wave or real-space DFT codes.
While based on SLATE, minq is easily adaptable to other libraries, and it is the objective to extend
it to other linear algebra implementations. We plan to include support for the ELSI [32] library
that offers several alternatives for some parallel linear algebra operations.

4.6.1 Usage and problem sizes

Minq is designed for simplicity of use: it only needs one parameter to run, the number of atoms
NA, and it does not need any external data. NA is the significant value used in the community to
describe the scale of a calculation. The actual simulation parameters, the number of wave-functions
NW and the size of the basis set NB are derived by minq from NA based on a typical material
(crystalline silicon).

The computational cost of minq is O(N3
A) and the memory one is O(N2

A). The typical number
of atoms for DFT codes range between 50 atoms for small calculations, to around 10,000 atoms for
very large hero-type calculations.
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4.6.2 Design and algorithms

The objective of a DFT simulation is to calculate a set of wave-functions that describes the electrons
in a material. Each wave-function is represented by a set of coefficients on a given basis set; this
basis set is usually a set of plane waves, but other basis sets are used by some codes. The wave-
functions are obtained by calculating the first NW eigenvectors of the Hamiltonian operator H.
Minq includes the orthogonalization of the wave-functions and the subspace diagonalization of the
Hamiltonian. The cost of these operations scales as O(N3), so they dominate for large systems. At
present minq does not include the fast Fourier transforms (FFTs) that appear in plane-wave-based
DFT, but this might be implemented in the future.

The orthogonalization and diagonalization algorithms required for DFT are traditionally pro-
vided by BLAS and LAPACK. Minq implements these procedures calling SLATE. A particularity of
the implementation has to do with how the matrices are distributed. In the standard parallelization
strategy for DFT [4], the wave-function matrix is distributed in blocks using a 2D decomposition.
Usually ScaLAPACK and SLATE work with several blocks of the matrix per processor. In DFT,
however, only one block is assigned per processor since this is the most efficient approach for
the FFT operations that require contiguous data. One of the objectives of developing minq is to
understand how much of this limitation affects performance.

Minq is a new proxy app to represent the data decomposition and linear algebra in plane-wave
DFT codes. It is designed for simplicity of development and use. As such we expect it to be a
valuable tool to help library and hardware developers to understand the nature of workloads that
appear in quantum material simulations.

GitHub: https://github.com/LLNL/minq

4.7 Skeletal Proxy Apps for I/O and Communication

Many proxy apps are designed to model the computation phases of an application. However,
the I/O and communication phases are becoming increasingly performance-critical as increases in
compute performance continue to outstrip improvements in network and I/O bandwidth.

To facilitate modeling of communication and I/O, we have been working on Skel-Proxy, a set of
tools for automatic generation of proxy apps that target I/O and communications of AI workloads.
This toolset is based on Skel, which has been widely used for generating I/O benchmarks and other
codes.

The Proxy App project has focused on modeling applications’ I/O and communication behaviors
by capturing traces of POSIX I/O and MPI communication calls. We collaborated with members
of the Tau team to adapt the previously existing Tau tracing mechanism to provide sufficient
information to allow modeling of I/O and communication behavior. The models are then used to
instantiate Skel templates to produce skeletal proxy applications that mimic the modeled behaviors
of the original application. This process is shown schematically in Figure 2.

The proxy applications generated by Skel-Proxy consist of generated C++ files, along with a
tailored build mechanism that uses CMake to support building and installing the proxy applica-
tion on other platforms without significant user intervention. This results in a realistic code that
exercises the I/O and communication capabilities of a target platform without a need to build
the original application on that platform, and without most of the library dependencies that the
original application would have required.

The main goal of this work is to create the capability to quickly create proxies for arbitrary
applications that capture their I/O and communication behaviors. These proxies will provide a
means to test new hardware with realistic workflows, support a range of research questions while
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Figure 2: The process of generating a skeletal proxy application.

minimizing complexity (as the proxies have few library dependencies and a simple, consistent build
mechanism), and promote wider understanding of codes that cannot be widely released.

4.7.1 Completed activities

The I/O proxy application generation work began in January 2020. Since then, we have focused
on the I/O behavior of applications, and so far we have accomplished the following:

• Define a schema for the I/O models

• Collaborate with the Tau project to obtain needed trace information in a usable format

• Create a set of filters to flexibly extract I/O models from Tau traces

• Create a set of templates designed to produce the set of files that makes up a complete
proxy application (including source, CMake, and the synthetic files needed to support read
behavior).

4.7.2 Current and future work

As we complete and refine the Skel-Proxy toolchain, we are beginning to turn toward gathering
a collection of AI applications with both typical and extreme I/O and communication behaviors,
in order to create and release a suite of living proxies that target a changing set of interesting
applications. We have identified one application, MENNDL, to use for the initial evaluation of
these tools. We are working with the MENNDL team to obtain traces, and will work toward
the release of this first generated proxy application, which is planned for November, 2020. We
will continue to add other proxies to the suite during FY2021, aiming for 5-10 AI/Deep Learning
proxies, while refining Skel-Proxy to support a broader set of cases. This will put us on track for a
release of the Skel-Proxy tools in August 2021, which will make it easy for users to build their own
I/O skeletons as proxies for a wide range of applications.
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5 Continuous Integration

Continuous Integration (CI) testing has proven useful for many open- and closed-source projects
and has become a standard good practice for codes ranging from small projects to operating systems
developed by Fortune 500 companies, all the way to tightly-coupled codes supported by multiple
DOE laboratories.

Implementing CI within ECP is a significant challenge due to the need to test against a variety
of hardware and environments across multiple laboratories. As the Exascale Computing Project
(ECP) is meant to prepare application codes to run on a recently solidified target representing
the exascale High-Performance Computing (HPC) platforms, the proxy apps have been vital to
determine the viability of programming environments, and hardware and software tool chains. This
has manifested as a need to run on a wide range of Linux-based operating systems with a range
of compilers and libraries. Additionally, it is of vital importance to ensure that the various build
systems for these support the slightly different HPC environments on each machine at different
laboratories.

5.1 ECP CI Project

Recent developments in the ECP CI project have helped make it possible to test proxy apps on
more platforms. While the ECP CI project had many goals, the two most pertinent to the ECP
Proxy Apps project were the batch runner and general efforts to provide shared infrastructure
between laboratories.

The batch runner and its associated SetUID capabilities were vital from a security and repro-
ducibility standpoint. Prior to these efforts, all CI jobs required specialized containers or dedicated
resources for execution. The batch runner provides the ability to run CI jobs via the actual job
scheduler (batch runner) on HPC platforms, and the SetUID capabilities ensure that jobs are
executed using the developer’s account that pushed changes to the repository. These combined
allow for CI jobs to run on the actual hardware and platforms of interest as the developer with
authorization. A simple example of a batch runner configuration can be seen in Figure 3.

Similarly, the shared infrastructure between labs has been vital. While the workflows are still a
work in progress, this allows developers at one site to run their tests on almost all sites’ platforms
in a mostly automatic way.

5.2 Proxy Apps Team Methodology

We started with build tests for most of the proxy apps in our catalog using Travis CI. We need
to ensure the apps actually build on standard Linux distributions before testing on non-standard
hardware. Due to their popularity, we picked Ubuntu and Fedora as baselines. As we recommend
Spack as the mechanism of choice to deploy proxy apps, we based the CI on Spack as well. While this
limits us to testing proxies that actually have Spack packages, it has the advantage that it enables
testing of Spack and the proxies’ dependent packages as well. We don’t test all apps of the catalog
as some apps, such as the CANDLE benchmarks, have missing dependencies in Spack. Where
possible, the ECP Proxy Apps team reaches out to the application teams to improve spackages,
but due to limited resources, triage is often necessary.
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Figure 3: Example of Batch Runner Configuration [1]

5.3 Lessons Learned

5.3.1 Tool Chain Issues with Proxy Apps

In the initial phase, we focused on fixing minor and major issues in the build systems and spackages
of different proxy apps. During this process, we found a number of minor issues in the build systems
and spackages of different proxy apps. Most of these issues were mainly due to hard-coded flags
and ambiguous dependency declarations. By working with the Spack team and the proxy apps
developers we were able to resolve most of these issues.

This hardcoding of paths and requirements is problematic as different sites and platforms have
vastly different environments. As an example, NERSC’s Cori is heavily influenced by its use of Cray
hardware and software, as seen in Figure 4, whereas Oak Ridge’s Summit has a module system
more heavily influenced by the underlying IBM Power9 nodes, as in Figure 5. Reconciling these
differences was primarily accomplished by using Spack to provide a somewhat common environment.
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Figure 4: Module Configuration on NERSC’s Cori
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Figure 5: Module Configuration on ORNL’s Summit
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A greater issue was that many Department of Energy scientists treat the GNU toolchain as
their primary and often only supported toolchain. This is problematic as many flags are hardcoded
(e.g., -march=native) in a way that GNU can understand but not other compilers. Adapting the
build systems to provide this information in a more vendor-agnostic fashion was a more involved
task but also greatly increased the readiness of these applications for exascale platforms.

5.3.2 Tool Chain Issues with Vendor Specific Workarounds

Once we verified that the proxy apps could be built with general toolchains, we focused on vendor
specific ones. Initially we used the ORNL Power9-based ASCENT machine.

Once these were fixed, we added CI on ORNL’s Power9-based Ascent machine. During this
step, we hit two new kinds of issues in Spack. The first one was due to the fact that the GNU
compiler on Ascent is actually an IBM XL compiler in disguise. This vendor-provided workaround
resulted in Spack, and the proxy apps team, making false assumptions about the compiler. Once we
informed Spack that this was the XL compiler in disguise, these issues were resolved. The second
issue was again hard-coded flags, that this time could be not processed by the IBM XL compiler.
We fixed those issues in Spack as well.

5.3.3 Automated Workflows

The CI pipelines are triggered automatically for each push to a main repository, which maps well
to pull requests and development. Travis CI and Gitlab CI cron jobs are planned once we got all
proxy apps to build ASCENT, which is required for nightly and weekly regression tests.

5.3.4 Credentials and Workflows

Currently the process still requires us to request an account on each individual site, but with the
federalization of ECP CI this will hopefully improve.

5.3.5 A Moving Target targeting Moving Targets

Much of this work has been used to stress-test and improve the Gitlab CI work. Because of very
responsive support from Onyx Point, we frequently encountered needs for software updates and the
need for facilities to update the Gitlab installations.

And, as previously mentioned, the Gitlab CI installations primarily focused on early testing
platforms to evaluate hardware and software for pre- and post-exascale platforms. In many of
these cases the platforms simultaneously were used by friendly users, facilities, and the vendors
themselves. This often resulted in toolchain and environment changes occurring on a weekly basis.

The combination of environment updates from all of these directions at once meant that a script
that worked one day could mysteriously fail the next, with no clear indication of the cause. This
resulted in a lot of debugging to determine what changed, and what needs to change to support
this. An example of such a failure can be seen in Figure 6.

5.3.6 Export Control and NDAs

The Exascale Computing Project is an incredibly diverse project with members coming from a wide
range of backgrounds, employment classifications, and nationalities. While vital to develop solid
software and engage in good science, this proved somewhat problematic for the purpose of debugging
issues on many of these platforms. Much of the information on these early testing platforms was
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Figure 6: Example of a Partial Failure in the CI Pipeline
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still under NDA, and not every organization was under the same shared NDA, and identifying
what information could and could not be shared proved difficult. Similarly, some organizations
interpreted the export control determinations in different ways, which further restricted who could
and could not be brought in to debug and troubleshoot.

This generally resulted in the ECP Proxy Apps team needing to identify issues independently
without any support, and trying to isolate the aspects of these codes, which had issues with certain
aspects of the early testing platforms. This was clearly sub-optimal for many reasons.

5.4 Future Work

Members of the ECP Proxy App Team have recently provided assistance to vendor partners in the
El Capitan Center of Excellence (COE) who were working with the Spack team to stand up a CI
system on the Redwood system at HPE. This system is being used to test the HPE and AMD
software stacks against open-source libraries and proxy apps of importance to LANL, LLNL, and
SNL. The COE plans to use this system to provide early detection of compiler and other toolchain
issues that will impact NNSA applications. Ideally, both functionality and performance regressions
will be detectable.

The Proxy App Team has proposed to facilitate a similar CI system running on early hardware
for Frontier and Aurora. Such a system will be most successful if AD and ST teams will identify
critical features, kernels, patterns, etc. and work with the Proxy App Team to find or create proxies
that exhibit these critical needs. Having such a collection in a CI system will help keep these issues
firmly in view and help assure that system vendors focus on providing the solutions needed by ECP
applications. The system will also help ECP developers stay abreast of the status of various needed
features.
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[27] André Schleife, Erik W Draeger, Yosuke Kanai, and Alfredo A Correa. Plane-wave pseu-
dopotential implementation of explicit integrators for time-dependent Kohn-Sham equations
in large-scale simulations. The Journal of chemical physics, 137(22):22A546, 2012.

[28] Alexander Sergeev and Mike Del Balso. Horovod: Fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[29] M A Sprague, S Ananthan, G Vijayakumar, and M Robinson. ExaWind: A multifidelity
modeling and simulation environment for wind energy. Journal of Physics: Conference Series,
1452:012071, jan 2020. doi:10.1088/1742-6596/1452/1/012071.

[30] Alexey V Titov, Ivan S Ufimtsev, Nathan Luehr, and Todd J Martinez. Generating efficient
quantum chemistry codes for novel architectures. Journal of chemical theory and computation,
9(1):213–221, 2013.

[31] Justin M Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik, Nicholson T Collier,
John Bauer, Fangfang Xia, Thomas Brettin, Rick Stevens, Jamaludin Mohd-Yusof, et al.
CANDLE/Supervisor: A workflow framework for machine learning applied to cancer research.
BMC bioinformatics, 19(18):59–69, 2018.

[32] Victor Wen-zhe Yu, Carmen Campos, William Dawson, Alberto Garćıa, Ville Havu, Ben
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