
Approved for public release

Best Practices for Using
Proxy Apps as Benchmarks

ECP Annual Meeting

February 5, 2020

David Richards, LLNL

Jeanine Cook, SNL

Oscar Hernandez, ORNL

Hal Finkel, ANL

Joe Glenski, HPE/Cray

LLNL-PRES-805269

2LLNL-PRES-804121

Today’s Agenda is Packed with Proxy App Goodness

10:30-10:45 David Richards

• Introduction. When is a proxy app also a
benchmark? What makes a good benchmark?
Examples from Quicksilver.

10:45-11:00 Jeanine Cook

• Evaluating fidelity of proxy apps.

11:00-11:15 Oscar Hernandez

• How facilities assemble benchmark suites and
the considerations for what is and is not
included.

11:15-11:30 Hal Finkel

• Uses of proxy apps for software-technology
project development (LLVM, profiling tools,
etc.). Experiences working with vendors with
proxy apps.

11:30-11:45 Joe Glenski

• How vendors view our benchmark suite
including what is and is not effective

11:45-12:00 Feedback Session

• How to improve the usefulness of the ECP
Proxy App Suite for Benchmarking

3LLNL-PRES-804121

Proxy applications are models for one or more features
of a parent application

• Proxy apps omit many features of parent apps

• Proxy apps come in various sizes
– Kernels, skeleton apps, mini apps

• Proxies can be models for
– Performance critical algorithms

– Communication patterns

– Programming models and styles

• Like any model, proxies can be misused beyond
their regime of validity

All benchmarks are proxy apps.
Proxy apps are not automatically good benchmarks.

4LLNL-PRES-804121

• The collection of proxy apps is large and growing

• Proxies are relatively easy to use and build

• They are rightly viewed as more realistic than

benchmark suites (e.g. NAS, Rhodinia, etc.)

• Many researchers use proxies in their papers

However

• Proxy authors often fail to anticipate possible uses

• Proxy users aren’t always familiar with caveats and

limitations of proxies

When proxies go out into the wild…

Sometimes this works out well and sometimes it does not

The ECP Proxy App Catalog

lists over 50 proxy apps

5LLNL-PRES-804121

• “To make LULESH go through the polyhedral compilation procedure, we modified LULESH by
resolving all indirect array accesses. Although doing this oversimplified LULESH, it allows us to
study the energy and time relationship of polyhedral compilation techniques with LULESH.”

• Many papers use skeleton benchmarks (MPI only) out of context and draw networking
conclusions.

• Many papers and reports present proxy app performance information without describing input
parameters. Sensitivity analysis is rare.

• Vendor reports often contain similar errors to research papers.

An understanding of what you are using and why its important
are essential when using proxy apps.

Proxy apps are models. Models are easy to mis-use

6LLNL-PRES-804121

• Proxies are often widely published even when they

are originally intended for internal use

• Better documentation that is easier to digest is

usually needed to help guide researchers

• We need to be more clear which proxies make good

benchmarks (and what inputs to use)

• Writing code is fun

Writing documentation is not

Proxy app authors are not blameless
We have made some of these mistakes ourselves

Image from a DOE website showing

LULESH communication pattern. LULESH

is good for many things but

it is not representative of unstructured

codes’ communication patterns.

7LLNL-PRES-804121

A proxy app becomes a benchmark when it is matched with:

A Figure of Merit (FOM)
• An FOM is a measure of application

throughput performance

• Good FOMs usually scale with performance
– 2X problem run 2X faster (than 1X problem on

old platform) = 4X FOM
– 1X problem run 4X faster = 4X FOM
– FOM may need to consider application

algorithm scaling with system size

A Set of Run Rules
• Run rules may include:
– Problem specification
– Code version
– Weak or strong scaling constraints
– Allowable code modifications
– Wall time constraints
– Misc limits such as memory per MPI rank, node

count(s) to run jobs on, etc.

The FOM and run rules must be chosen carefully, or the benchmark is meaningless

8LLNL-PRES-804121

• Particles interact with matter by a variety of “reactions”

• The probability of each reaction and its outcomes are captured in
experimentally measured “cross sections” (Latency bound table lookups)

• Follows many particles (millions or more) and uses random numbers to
sample the probability distributions (Very branchy, divergent code)

• Particles contribute to diagnostic “tallies” (Potential data races)

Quicksilver is a proxy for Mercury (Monte Carlo transport)

Absorption Scattering Fission

Quicksilver attempts to capture these key traits of Mercury

9LLNL-PRES-804121

Defining a good Quicksilver benchmark problem is very challenging

Challenges
• Huge variation in scale:

Benchmark must be equally valid on 1 node or
10,000 nodes.

• Simulation geometry:
Any geometry that resembles production use
will be difficult to scale.

• Realistic behavior:
Production behavior arises from complex
geometry and multiple materials.

• Load Balance:
Imbalanced load distorts performance.

Solutions
• Homogeneous single material geometry:

Trivially scalable and load balanced.

• Run rules to constrain problem:
Fixed mesh size and elements per node.
Also set target range for wall time per step.

• Made-up Materials:
Material properties tailored to interact with
simplified physics to produce desired
behavior. Blend of real materials.

10LLNL-PRES-804121

Simplified physics can drastically alter program behavior
Quicksilver’s synthetic cross sections struggle to match this complexity

Scattering

Absorption

Fission

Nuclear Cross Sections for 235U

Absorption

Nuclear Cross Sections for H2O

Elastic
Scattering

Inelastic
Scattering

11LLNL-PRES-804121

The Quicksilver CTS2 benchmark problem represents memory
access patterns more accurately than the default problem

• The default Quicksilver problem is
only a “smoke test” intended for
developers

• Energy spectrum determines memory
access pattern for cross section
lookups

• Smoke test overpopulates high
energies compared to intended
benchmark

• Moral: Beware default problems
unless you know they are intended to
be representative

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

75 82 89 96 10
3

11
0

11
7

12
4

13
1

13
8

14
5

15
2

15
9

16
6

17
3

18
0

18
7

19
4

20
1

20
8

21
5

22
2

R
el

at
iv

e
P

op
ul

at
io

n

Energy Group

Particle Energy Spectrum

Smoke Test
CTS2 Benchmark

12LLNL-PRES-804121

Please remember these key take-aways:

• All benchmarks are proxy apps. Proxy apps are not
automatically good benchmarks

• An understanding of what you are using and why its important
are essential when using proxy apps

• Benchmarks have well-defined run rules and a figure of merit

• Good benchmark problems can be hard to design. Must
address issues of scalability, fidelity, ease of use, etc.

• DOE system procurement suites can be a good place to look
for benchmark problems

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-804121
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Approved for public release

Using Cosine Similarity to
Quantify Representativeness of
ECP Proxy Apps

Jeanine Cook (SNL) and Jeffery Kuehn (LANL)
Omar Aaziz (SNL)
Courtenay Vaughan (SNL)

SAND2020-1245 PE

Motivation for Examining Representativeness

• Proxy applications used for
• Long term vendor collaboration projects (e.g., PathForward)
• Procurements (benchmarking/performance estimation)
• Testing new systems/architectures

• Incentive to limit the number of proxy codes
• Constrained on staff and time (labs & vendors)
• Vendors have limited time & staff to respond to RFPs

• Qualitatively down-select number of project codes
• Debate among team of SMEs about perceived relevance
• Choices often advocated based on familiarity, ease, etc

Strategy: Add quantitative support to balance qualitative inputs

Insights

• Performance is interaction of workload with set of design constraints
imposed by a particular system

• Manner and proportion that design constraints affect particular workload
becomes the workload fingerprint

• Similar workload fingerprints mean workload responds similarly to
particular design constraint and to changes in that particular
constraint

• E.g. Expect codes with similar dependence/bottleneck on memory bandwidth
to derive similar benefit from memory bandwidth improvement

• Workload fingerprints must be easy and fast to collect
• Not through detailed simulators!

Approach

• Rely on two-elements as building-blocks/tools
• Ability to collect fingerprint for a code
• Ability to quantify a similarity comparison between two fingerprints

• Fingerprint construction
• Aggregation of set of metrics relevant to system design constraints

• Hardware performance counters/events grouped by design constraints
• E.g., Processor frontend, execution, backend, cache/memory hierarchy

• Cosine similarity comparison
• Compares vectors of performance counter events in high dimensional space

Cosine Similarity

• A property of the inner (dot) product in
vector spaces of two or more dimensions

• Think: “Projection of A in the direction of B”

• Uses cos! as an angular distance metric
• Quantifies the distance between A and B

independent of their magnitude
" # $ ≡ &

'()

*
+',' = ∥ " ∥∥ $ ∥ cos !

∴ cos ! = ∑'()* +','
∥ " ∥∥ $ ∥

Performance Counter Events & Selectivity
Cache Selectivity Pipeline Selectivity

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT 2.721FP_ASSIST.ANY 3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM 2.213FP_ASSIST.X87_INPUT 3.162
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS 2.178MEM_UOPS_RETIRED.STLB_MISS_LOADS 2.839
L2_LINES_IN.I 1.531MEM_UOPS_RETIRED.STLB_MISS_STORES 2.577
MEM_LOAD_UOPS_RETIRED.L3_MISS 1.482LD_BLOCKS.STORE_FORWARD 2.212
L2_RQSTS.RFO_HIT 1.410UOPS_ISSUED.SINGLE_MUL 2.114
L2_RQSTS.CODE_RD_MISS 1.406LD_BLOCKS.NO_SR 2.039
MEM_LOAD_UOPS_RETIRED.L2_MISS 1.383UOPS_ISSUED.FLAGS_MERGE 1.977
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE 1.305ILD_STALL.LCP 1.796
MEM_LOAD_UOPS_RETIRED.L3_HIT 1.305DSB2MITE_SWITCHES.PENALTY_CYCLES 1.777
L2_LINES_IN.S 1.267DSB2MITE_SWITCHES 1.777
ICACHE.MISSES 1.131MISALIGN_MEM_REF.STORES 1.656
L2_RQSTS.ALL_CODE_RD 1.073LSD.CYCLES_4_UOPS 1.650
L2_TRANS.CODE_RD 1.070LSD.UOPS 1.608
MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM 1.067LSD.ACTIVE 1.580
ICACHE.HIT 1.023ARITH.FPU_DIV_ACTIVE 1.551
L2_RQSTS.DEMAND_DATA_RD_HIT 1.018UOPS_DISPATCHES_CANCELLED.SIMD_PRF 1.434
L2_RQSTS.DEMAND_DATA_RD_MISS 0.999BACLEARS.ANY 1.358

BROADWELL

SKYLAKE

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 10.24 84.61 83.55 61.94 64.17 86.71 85.58 75.88 44.50
LAMMPS 10.24 0.00 75.12 73.95 53.63 56.50 79.66 78.51 70.97 34.97
MiniQMC 84.61 75.12 0.00 5.97 42.91 47.75 51.57 51.28 66.16 43.41
QMCPack 83.55 73.95 5.97 0.00 37.71 42.28 45.85 45.52 60.31 40.89
sw4lite 61.94 53.63 42.91 37.71 0.00 6.47 27.99 26.86 30.17 24.55
sw4 64.17 56.50 47.75 42.28 6.47 0.00 23.59 22.42 23.83 29.89
SWFFT 86.71 79.66 51.57 45.85 27.99 23.59 0.00 1.22 18.65 51.79
HACC 85.58 78.51 51.28 45.52 26.86 22.42 1.22 0.00 18.14 50.70
pennant 75.88 70.97 66.16 60.31 30.17 23.83 18.65 18.14 0.00 51.63
snap 44.50 34.97 43.41 40.89 24.55 29.89 51.79 50.70 51.63 0.00

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 8.97 81.96 68.83 38.66 39.55 28.51 37.76 43.58 22.20
LAMMPS 8.97 0.00 81.38 68.47 38.60 39.33 29.50 38.49 42.40 20.45
MiniQMC 81.96 81.38 0.00 16.35 47.28 47.63 58.78 49.85 46.58 65.55
QMCPack 68.83 68.47 16.35 0.00 36.05 36.40 46.19 37.82 36.33 53.30
sw4lite 38.66 38.60 47.28 36.05 0.00 4.05 20.56 17.09 12.89 21.69
sw4 39.55 39.33 47.63 36.40 4.05 0.00 19.82 15.87 11.91 22.79
SWFFT 28.51 29.50 58.78 46.19 20.56 19.82 0.00 10.33 24.49 21.44
HACC 37.76 38.49 49.85 37.82 17.09 15.87 10.33 0.00 19.92 26.67
pennant 43.58 42.40 46.58 36.33 12.89 11.91 24.49 19.92 0.00 25.00
snap 22.20 20.45 65.55 53.30 21.69 22.79 21.44 26.67 25.00 0.00

Gaps & Redundancy

SWFFT HACC pennant sw4 sw4lite snap QMCPack MiniQMC LAMMPS ExaMiniMD

SWFFT 0.00 1.22 18.65 23.59 27.99 51.79 45.85 51.57 79.66 86.71
HACC 1.22 0.00 18.14 22.43 26.86 50.70 45.52 51.28 78.51 85.58

pennant 18.65 18.14 0.00 23.83 30.17 51.63 60.31 66.16 70.97 75.88

sw4 23.59 22.43 23.83 0.00 6.47 29.89 42.28 47.75 56.50 64.17

sw4lite 27.99 26.86 30.17 6.47 0.00 24.55 37.71 42.91 53.63 61.94

snap 51.79 50.70 51.63 29.89 24.55 0.00 40.89 43.41 34.97 44.50

QMCPack 45.85 45.52 60.31 42.28 37.71 40.89 0.00 5.97 73.95 83.55

MiniQMC 51.57 51.28 66.16 47.75 42.91 43.41 5.97 0.00 75.12 84.61

LAMMPS 79.66 78.51 70.97 56.51 53.63 34.97 73.95 75.12 0.00 10.24

ExaMiniMD 86.71 85.58 75.88 64.17 61.94 44.50 83.55 84.61 10.24 0.00

Av
er

ag
e

Ap
p1

&

Ap
p2

Ap
p1

Ap
p2

Pr
ox

y
10

Pr
ox

y
04

Pr
ox

y
05

Pr
ox

y
08

Pr
ox

y
11

Pr
ox

y
01

Pr
ox

y
02

Pr
ox

y
07

Pr
ox

y
09

Pr
ox

y
03

Pr
ox

y
06

Pr
ox

y
12

Ex
cl

us
iv

e
Su

m

ac
ro

ss
 P

ro
xi

es

m
in

Av
g

Ex
cl

us
iv

e

Av
er

ag
e

ac
ro

ss

Pr
ox

ie
s

App1 0.97 1.00 0.94 0.98 0.95 0.92 0.91 0.91 0.89 0.90 0.94 0.91 0.78 0.72 0.67 11.41 0.67 0.89 0.88

App2 0.97 0.94 1.00 0.88 0.89 0.85 0.85 0.84 0.84 0.88 0.82 0.78 0.81 0.53 0.48 10.40 0.48 0.81 0.8

Proxy10 0.93 0.98 0.88 1.00 0.98 0.96 0.94 0.95 0.94 0.91 0.93 0.90 0.73 0.72 0.68 11.50 0.68 0.89 0.88

Proxy04 0.92 0.95 0.89 0.98 1.00 0.99 0.99 0.99 0.99 0.96 0.83 0.80 0.76 0.58 0.51 11.22 0.51 0.87 0.86

Proxy05 0.89 0.92 0.85 0.96 0.99 1.00 1.00 1.00 1.00 0.96 0.80 0.76 0.72 0.55 0.47 10.97 0.47 0.86 0.84

Proxy08 0.88 0.91 0.85 0.94 0.99 1.00 1.00 1.00 1.00 0.96 0.77 0.74 0.73 0.50 0.43 10.83 0.43 0.84 0.83

Proxy11 0.88 0.91 0.84 0.95 0.99 1.00 1.00 1.00 1.00 0.95 0.78 0.75 0.72 0.53 0.46 10.89 0.46 0.85 0.84

Proxy01 0.87 0.89 0.84 0.94 0.99 1.00 1.00 1.00 1.00 0.96 0.76 0.72 0.72 0.49 0.41 10.71 0.41 0.84 0.82

Proxy02 0.89 0.90 0.88 0.91 0.96 0.96 0.96 0.95 0.96 1.00 0.73 0.69 0.88 0.42 0.35 10.56 0.35 0.83 0.81

Proxy07 0.88 0.94 0.82 0.93 0.83 0.80 0.77 0.78 0.76 0.73 1.00 0.99 0.62 0.90 0.86 10.74 0.62 0.84 0.83

Proxy09 0.85 0.91 0.78 0.90 0.80 0.76 0.74 0.75 0.72 0.69 0.99 1.00 0.59 0.92 0.89 10.45 0.59 0.82 0.8

Proxy03 0.80 0.78 0.81 0.73 0.76 0.72 0.73 0.72 0.72 0.88 0.62 0.59 1.00 0.33 0.28 8.68 0.28 0.69 0.67

Proxy06 0.63 0.72 0.53 0.72 0.58 0.55 0.50 0.53 0.49 0.42 0.90 0.92 0.33 1.00 0.96 8.17 0.33 0.65 0.63

Proxy12 0.57 0.67 0.48 0.68 0.51 0.47 0.43 0.46 0.41 0.35 0.86 0.89 0.28 0.96 1.00 7.44 0.28 0.60 0.57

Performance Group Breakdown: Cache

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 5.02 54.54 38.73 11.70 12.49 6.58 6.38 13.21 7.13
LAMMPS 5.02 0.00 54.69 38.62 15.66 16.27 4.87 6.38 13.60 10.88
MiniQMC 54.54 54.69 0.00 17.15 47.12 46.08 50.02 48.98 42.16 49.15
QMCPack 38.73 38.62 17.15 0.00 32.64 31.67 33.92 32.94 26.29 33.78
sw4lite 11.70 15.66 47.12 32.64 0.00 1.15 13.41 11.40 11.15 5.07
sw4 12.49 16.27 46.08 31.67 1.15 0.00 13.74 11.70 10.69 5.69
SWFFT 6.58 4.87 50.02 33.92 13.41 13.74 0.00 2.24 9.09 8.80
HACC 6.38 6.38 48.98 32.94 11.40 11.70 2.24 0.00 7.86 6.87
pennant 13.21 13.60 42.16 26.29 11.15 10.69 9.09 7.86 0.00 9.37
snap 7.13 10.88 49.15 33.78 5.07 5.69 8.80 6.87 9.37 0.00

Performance Differences with Different Inputs

How Might this be Used?

• Identify gaps/artifacts in representation for set of proxies
• Artifacts – proxy behaviors that do not appear in workload
• Gaps – workload behaviors that do not appear in proxies

• Identify redundancies in set of proxies
• Quantify similarities between proxies and parents or workloads

• Infer relationships between proxy and workload performance
• Infer relationships for particular proxy/parent with varying problem/input

• Apply these three properties to:
• Provide feedback to proxy developers to improve representativeness
• Help procurement/project teams to better identify minimum spanning sets
• Identify workload-platform mappings by similarity

• Identify workloads that are favorable candidates to port to GPU
• Steer application workloads toward favorable architectures

Future Work

• Infer error bounds on similarity-based proxy performance projections
• Validation

• Correlate results with additional performance data
• Examine network and I/O behavior similarity
• Determine which applications optimally map to which architectures

based on similarity
• Predict porting effort to target architectures

• Quantify code differences in application ports to target architectures
• Use application similarity to predict potential code effort

• Guide optimization efforts

Approved for public release

SAND2020-1245 PE

THANKS!

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Perspectives on Application Benchmarking at the
Oak Ridge Leadership Computing Facility (OLCF)

Oak Ridge Leadership Computing Facility
National Center for Computational Sciences
Oak Ridge National Laboratory

Contributors: Verónica Vergara, Reuben D. Budiardja, Bronson Messer, Jack Wells, Wayne
Joubert, Swen Boehm and Oscar Hernandez

This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725

22

OLCF Use Cases for Benchmarking

• Program Development and Marketing
• Application Development and Performance Readiness for

Future platform
• Procurements
• User Program Management
• Programming Models (PM) Development

33

Program Development and Marketing

We build supercomputers for
science!

Top500.org has been a success in
marketing HPC

44

Summit is latest DOE #1 system on
Top500

143.5 PF HPL
Shows math
performance

2.9 PF HPCG
Shows fast data

movement

14.7 GF/W
Shows energy

efficiency
#1 on the IO-500
Shows file system

performance

CORAL Procurements

Approach
• Competitive process - one RFP (issued by LLNL) leading to 2 R&D contracts and

3 computer procurement contracts
• For risk reduction and to meet a broad set of requirements, 2 architectural

paths were selected and Oak Ridge and Argonne must choose different
architectures

• Multi-year Lab-Awardee relationship to co-design computers
• Both R&D contracts jointly managed by the 3 Labs
• Each lab manages and negotiates its own computer procurement contract,

and may exercise options to meet their specific needs
• Understanding that long procurement lead-time may impact architectural

characteristics and designs of procured computers

Leadership Computers RFP requested >100 PF, 2 GB/core main memory, local
NVRAM, and science performance 4x-8x Titan or Sequoia (CORAL2: 50x)

Objective - Procure 3 leadership computers to be sited
at Argonne, Oak Ridge and Lawrence Livermore in
2017 (CORAL2, 2021-2022).

Sequoia (LLNL)
2012 - 2017

Mira (ANL)
2012 - 2017

Titan (ORNL)
2012 - 2017

Current DOE Leadership Computers

66

CORAL (I) Results

Single
Solicitation

Joint
Evaluation
& Selection

R&D
Contract

R&D
Contract

ORNL
Build

Contract

LLNL Build
Contract

Argonne
Build

Contract

IBM Hybrid CPU/GPU systems

Intel/Cray system

Summit

Sierra

Theta
&

Aurora

77

Wants and constraints
• CORAL benchmarks should

– Span the breadth of the NNSA (LLNL) workload
– Span the time-dependent(!) and much broader space of LCF

workloads
– Span co-spaces of algorithms, implementations, and use cases
– Provide adequate drivers for system SW and library development

• CORAL benchmarks must
– ..not be so numerous that vendors cannot provide sophisticated

analyses on O(weeks) time scale
• Significant challenge to cover/span the breadth of concerns, while not being

onerous on vendors.
– …not encumber application developers with 24-7 support

responsibilities during those weeks
– …use proxies for NNSA apps

88

CORAL-2 Benchmark Codes
• Scalable Science Benchmarks: HACC, Nekbone, QMCPACK,

LAMMPS

• Throughput Benchmarks: AMG, Kripke, Quicksilver, PENNANT

• Data Science and Deep Learning Benchmarks:
– Big Data Analytic Suite

• [Schmidt, et al., “Defining Big Data Analytics Benchmarks for Next Generation
Supercomputers,” https://arxiv.org/abs/1811.02287]

– Deep Learning Suite

• Skeleton Benchmarks

• Microkernel Benchmarks

https://asc.llnl.gov/coral-2-benchmarks/

https://asc.llnl.gov/coral-2-benchmarks/

99

Application Development and Performance Readiness

CAAR (Center for Accelerated Application Readiness) Goals and
Anticipated Outcomes:

• Primary OLCF means to ensure application readiness

• Scalable, accelerated science applications at the start of Frontier
operation

• CAAR experience is translated to robust training program, “Best Practices”
papers / documentation, report to ASCR

• Close collaboration with Programming Environment and Tools Team

• Further hardening of the system at scale with a broader set of applications

• Build staff expertise to enable a smooth transition and effective support of
user programs

1010

“CAAR for Frontier” Selection Criteria
Category Description

Science • Compelling scientific vision alignment with Nation’s science needs
• Broad coverage of science domains

Implementation
(models &
algorithms)

• Broad coverage of relevant programming models, environment,
languages, implementations

• Broad coverage of relevant algorithms and data structures

Development
Plan

• Feasibility: measure of success is “Figure of Merit” compared to Summit
• Clear challenge problem for execution on Frontier

Development
Team

• Commitment from development team
• Plan for integration with other active development directions
• OLCF liaison domain-specific skills and expertise with the application
• Engagement with Vendor Center of Excellence

https://www.olcf.ornl.gov/caar/Frontier-CAAR/

https://www.olcf.ornl.gov/caar/Frontier-CAAR/

1111

Application Readiness: Community Effort

CAAR

• Readiness applications are drawn
from CAAR, ECP engagement
applications, as well as INCITE and
ALCC projects on Summit

• CAAR provides the primary risk
mitigation strategy for meeting the
application readiness KPP

• CAAR is also the vanguard for the
broader application readiness
ecosystem and for future science
– Development of training and

documentation
– Knowledge development for staff
– Improvements to the software

stack robustness and performance

Application Readiness

1212

Acceptance Testing (AT)
• Main objectives of the AT:

– Verify correct functionality of the OLCF system and its programming
environment

– Evaluate the system to ensure it meets the functionality, performance,
and stability requirements outlined in the contract

– Demonstrate the usability of the system by the broad scientific user
community represented at the OLCF

• Acceptance Test Elements: hardware, functionality,
performance, and stability tests

• Tests are selected from applications from the production
portfolio

1313

Acceptance Tests Selection

• Review applications used by active projects on production
systems

• Compile list of features, programming languages, libraries, etc.

• Select a subset from the OLCF portfolio of application that
provides the highest coverage

• In some cases, no applications are available to use a new
technology/upcoming feature
– Use codes in active development? Not ideal, we want a frozen source
– Use mini-apps and benchmarks for these cases

1414

Acceptance Tests Selection (cont’d)

• Summit AT included applications, mini-apps, and benchmarks

1515

Acceptance Test Selection for Frontier

• Developing tests for new technologies requires porting of
applications

• Mini-apps and benchmarks are easier to port
– Usually a smaller source and simpler
– Easier to debug when issues come up

• Rely on benchmarks that adequately represent real
applications
– CORAL benchmarks (1 & 2), Proxy Apps, standard benchmark suites

used across centers

1616

User Program Management:
INCITE System Capability Metric (ISCM)
• Challenges:

– Ambiguity in many “allocation unit”
• core-hours → node hours

– Difficulty to compare relative performance across systems
• e.g. OLCF Summit’s node-hours vs Titan’s node-hours (== 30 x core-hours)

• Goals:
– Develop a metric that more accurately reflects system capability for

the execution of science applications
– (Potentially) use metric for “currency unit” in user-program allocations.
– Extendable, better longevity, and “workload agnostic”

• Initial focus on systems allocated under the INCITE program.

1717

User Program Management:
INCITE System Capability Metric (ISCM)
• Benchmark selection criteria:

– finer granularity than just two benchmarks (HPL and HPCG)
– not using specific applications since workloads are apt to vary over time
– representative of specific machine characteristics to give some visibility into

machine characteristics being measured
– concurrence with growth in capability of leadership class systems over time
– alignment with an existing benchmark suite which has some level of

community acceptance, to give some credibility to the choice.

• → Use a modified & extended version of the HPC Challenge benchmark
suite (https://icl.utk.edu/hpcc/) to build a measure we call the INCITE
System Capability Metric (ISCM).

R.D. Budiardja, W. Joubert, J. A. Harris, A. Tillack, T. L. Papatheodore, “ISCM: Towards a
Comprehensive Metric For Comparative Evaluation of Leadership-Class System Capability for
Scientific Applications” (unpublished, 2020)

https://icl.utk.edu/hpcc/

1818

PM Development: SPEC HPG -www.spec.org/hpg
1
8

HPG develops benchmarks to represent high-performance
computing applications for standardized, cross-platform
performance evaluation.

31 Organizations
10 companies
21 academic

Benchmark selection, development and results are peer-reviewed by members

1919

PM Development: HPG Benchmarks – SPEC ACCEL
• SPEC Accel provides a comparative performance measure of

– Hardware accelerator devices (GPU, Co-processors, etc.)
– Supporting software tool chains (Compilers, Drivers, etc.)
– Host systems and accelerator interface (CPU, PCIe, etc.)

• Computationally-intensive parallel HPC applications and mini-apps
• Portable across multiple accelerators
• Three distinct benchmarks, initially released in 2014, updated in 2017:

– OpenCL v1.1 19 C/C++ applications
– OpenACC v 1.0 15 Fortran/C applications
– OpenMP v4.5, 15 Fortran/C applications

• Support for power measurement

1
9

2020

We use SPEC ACCEL benchmarks to develop compilers

Open ACC OpenMP
GNU
9.1.0 PGI 19.5

GNU
9.1.0

XL
16.1.1-3

Benchmark
Reference
time Pass/Fail Time Benchmark

Reference
time Pass/Fail Time

ostencil 303.ostencil 145 12.1 503.postencil 109 10.2
olbm 304.olbm 455 36.3 504.polbm 122 19.9
omriq 314.omriq 956 35.5 514.pomriq 621 45.5
md 350.md 252 9.28 550.pmd 241 21.2
palm 351.palm 370 117 551.ppalm 544 203
ep 352.ep 530 45.8 552.pep 231 179
clvrleaf 353.clvrleaf 445 35.9 553.pclvrleaf 1145 55.5
cg 354.cg 408 31.2 554.pcg 333 72.8
seismic 355.seismic 370 26 555.pseismic 282 45.8
sp 356.sp 276 21.6 556.psp 818 29.3
csp 357.csp 270 19.5 557.pcsp 859 92.4
miniGhost 359.miniGhost 369 35.8 559.pmniGhost 397 41.5
ilbdc 360.ilbdc 367 27.3 560.pilbdc 653 30.5
swim 363.swim 230 34.2 563.pswim 159 28
bt 370.bt 223 9.37 570.pbt 780 75.7

Unofficial results: SPEC ACCEL 1.2 results – Academic use
Source: Swen Boehm, ORNL

https://procurement.ornl.gov/rfp/6400016227/
Solicitation No. 6400016227 : GNU Compiler Collection

https://procurement.ornl.gov/rfp/6400016227/

2121

Summary & Discussion

• OLCF is engaged in a variety of mission-critical activities that
require application and motif benchmarking.

• Flexibility is necessary in accomplishing activities.
– “Different horses for difference courses”.

• Sustainability and maintainability are key problems to address.

• ORNL participation in SPEC HPG provide real value to many
mission-critical functions.
– Investing in standards is a key strategy including benchmarking

– Opens the door to engage rest of HPC community - researchers,
vendors, HPC centers, etc.

Approved for public release

Use of Proxy Apps by Software-
Technology Projects and Hardware
Vendors

Hal Finkel

Leadership Computing Facility

Argonne National Laboratory

2

Proxy Apps Can Be Used By Software-Technology Projects
In Many Different Ways
• Can be used to test new library implementations, including:

– Math libraries
– Communication libraries (e.g., MPI)
– Support libraries (e.g., OpenMP's runtime library)

• Can be used to evaluate how new features in these libraries might be used in different kinds of applications.

• Can be used to test new programming-language/compiler features, including:
– Compiler optimizations
– Language constructs and extensions
– Warnings and other programming aids

• Can be used to test the functionality of tools, including:
– Profiling tools
– Debuggers and testing frameworks

3

An Example: DOE Proxy Apps in LLVM's Test Suite

LLVM is an open-source compiler infrastructure
used by many parts of our exascale ecosystem...

4

Proxy App Design vs. Use Cases For ST Development and
Testing
• Can your proxy app be used as part of an automated test suite?

– Does it produce non-deterministic output?
– Does it require large input files or produce large output files? Must it run on many ranks? Use a lot of memory?
– How portable is it? Does it use Linux-specific functionality?
– Does it have a unique build system and/or depend on difficult-to-build libraries?
– Remember that even debuggers and source-code analysis tools have test suites – it's not just proxies for which

performance is meaningful.

• Does your proxy app use advanced programming-language features?

• Does your proxy app depend on a lot of other libraries (just like the real application)?

• How easy would it be to change the programming model in your proxy app? How easy would it be to change
the data structures or data layout? Note that:
– A proxy app can be a good representation of the use of a programming model
– A proxy app can be a good representation of an algorithm independent of the programming model

5

Proxy App Design vs. Use Cases For ST Development and
Testing
• If I'm developing a new programming model (e.g., Kokkos, RAJA, OpenMP, OpenSomethingElse)

– I would like a proxy app where it's easy to change the programming model.

• If I'm developing a compiler, profiling tool, etc.
– I don't care about changing the programming model; I want the programming-model usage to be realistic.

• Note: These generally apply to the libraries on which your proxy app depends as well.

• If I'm developing for an existing hardware ecosystem (e.g., x86_64 + NVIDIA GPU)
– I might not care what libraries you use or how

• If I'm developing for a new hardware ecosystem (e.g., NewFancyAccelerator)
– Library dependencies might be very hard to deal with because of immature tools, hardware-specific code, etc.

• Enable your proxy app to run in a number of different modes:
– A quick mode to test proper algorithmic functioning (many tools use cases need this).
– Plus other modes which stress the machine in representative ways.

6

On Build Systems...

Winston Churchill said:

"No one pretends that democracy is perfect or all-wise. Indeed it has been said that democracy is the
worst form of Government except for all those other forms that have been tried from time to time…"

The same is true for build systems. Right now, CMake is our best approximation of democracy for
build systems. Use CMake. Do this even if your real application doesn't (unless your making a proxy
for your build system).

7

Some Experience Working With Hardware Vendors With
Proxy Apps...
1) Developing good proxy apps takes some time: don't wait to start developing them until the vendor

engagement has already started.

2) Proxy apps need good documentation, but, direct interaction with the application team (or some person with
sufficient application knowledge) is almost always essential.
– Vendor needs to document how the proxy app was run (parameters, etc.) and these should be reviewed by

knowledgeable people (to catch mistakes, miscommunication, etc.).
– This is all too common: You: "That makes no physical sense!" Vendor: "Yay! It's faster!”

3) Especially for influencing hardware design, vendors want to connect each application analysis to money:
– Apps used in procurement benchmarks are good.
– Apps for which improvements can be directly translated to value are good.
– Thus, the real app is almost always better (if it can be handled; might start with proxy and move to the real app later).
– Additional proxies might add to test suites (which can be valuable), but don't add significant value for design work.

© 2019 Cray, a Hewlett Packard Enterprise company

A VENDOR VIEW ON

BENCHMARKS IN HPC

PROCUREMENTS

Joe Glenski

glenski@hpe.com

© 2019 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING

STATEMENTS

This presentation may contain forward-looking statements that involve risks,
uncertainties and assumptions. If the risks or uncertainties ever materialize or the
assumptions prove incorrect, the results of Hewlett Packard Enterprise Company

and its consolidated subsidiaries ("Hewlett Packard Enterprise") may differ
materially from those expressed or implied by such forward-looking statements and
assumptions. All statements other than statements of historical fact are statements
that could be deemed forward-looking statements, including but not limited to any
statements regarding the expected benefits and costs of the transaction
contemplated by this presentation; the expected timing of the completion of the

transaction; the ability of HPE, its subsidiaries and Cray to complete the transaction
considering the various conditions to the transaction, some of which are outside the
parties’ control, including those conditions related to regulatory approvals;
projections of revenue, margins, expenses, net earnings, net earnings per share,
cash flows, or other financial items; any statements concerning the expected
development, performance, market share or competitive performance relating to

products or services; any statements regarding current or future macroeconomic
trends or events and the impact of those trends and events on Hewlett Packard
Enterprise and its financial performance; any statements of expectation or belief;
and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the
transaction described in this presentation may not materialize as expected; that the

transaction may not be timely completed, if at all; that, prior to the completion of the
transaction, Cray’s business may not perform as expected due to transaction-related
uncertainty or other factors; that the parties are unable to successfully implement
integration strategies; the need to address the many challenges facing Hewlett
Packard Enterprise's businesses; the competitive pressures faced by Hewlett
Packard Enterprise's businesses; risks associated with executing Hewlett Packard

Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the
enhancement of existing products and services to meet customer needs and
respond to emerging technological trends; and other risks that are described in our
Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or
updated from time to time in Hewlett Packard Enterprise's other filings with the

Securities and Exchange Commission, including but not limited to our subsequent
Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation
and does not intend to update these forward-looking statements.

2

© 2019 Cray, a Hewlett Packard Enterprise company

• The big headache Challenge of Writing RFPs

• How are benchmarks used in typical RFPs?

• Evaluation Metrics

• Projections and Estimates

• Optimization

• Suggestions from Benchmarkers

3

Outline

Special thanks to Tricia Balle, who provide ideas and material for this presentation

© 2019 Cray, a Hewlett Packard Enterprise company

• Identify desired system characteristics and ensure the RFP requirements reflect them
• How to eliminate what you don’t want and ensure what you do want is scored appropriately?

• How to easily compare vendor offerings?

• Ensure the document is clear and unambiguous
• Lack of clarity -> questions

• Questions -> time wasted -> delays in procurement schedule -> installation delays / risk of loss of
funding

• Allow vendors time to ask questions and share most questions and responses
• Clarification questions can identify issues that will affect all vendors

• Releasing benchmarks early can shake out problems before official RFP release

• Do allow for vendor-specific queries to be kept confidential if at all possible!

• Beware of the law of unintended consequences
• A requirement for more HPL performance than budget supports can lead to trouble if vendors bid what

you didn’t actually want

4

The challenge of writing RFPs

© 2019 Cray, a Hewlett Packard Enterprise company

Basic Aim: To measure the vendors’ proposed machine capabilities in comparison
to the customer’s workload requirements.
Basic Requirement: Understand what you value and how you will score proposals,
then provide the smallest set of benchmarks necessary to compare performance.

• Keep expectations of the vendors in proportion to value of the deal

Common Scenarios for Benchmark Use in RFPs:

• As a hurdle to limit responses from non-HPC savvy vendors

• To enable evaluation of offered systems and their capability to handle expected workloads.

• Sometimes just a simple evaluation of performance of proposed hardware

• If optimizations are allowed, can also evaluate vendors' support capabilities with eye to
support post-delivery

• To design and size the system required to run the workload

5

Why use Benchmarks in RFPs?

© 2019 Cray, a Hewlett Packard Enterprise company

• A clearly defined evaluation metric is important so we understand where to target
performance and what you value

• Also important to understand how highly benchmarks are weighted in overall
scoring

• Are benchmarks a very small proportion of the total final score?

• Will HPL Rmax determine system size, regardless of benchmark performance?

• Beware of benchmark requirements that have nothing to do with the purpose of the
machine (e.g., if you need a lot of network, don’t just use low node count benchmarks).

• If the workload is known to be memory bandwidth limited, maybe include codes similar to
STREAM (or weight them highly) and exclude things like SPEC (mostly clock bound).

• Consider a benchmark such as GPCNet to get a measure of ability of system to handle
congestion on the network

6

Evaluation Methods and Metrics

© 2019 Cray, a Hewlett Packard Enterprise company

• Simply run and report performance (often used as a barrier to entry)

• Run each benchmark test in under a specified target time (makes most sense in
cases such as operational weather with predefined constraints)

• Evaluate applications individually (relative to each vendor) Often includes an
evaluation of scaling performance up to system size or scaling limit

• Throughputs
• A well thought out throughput mix can be a useful tool and help evaluate I/O performance

• Throughput metrics are tough for vendors to model and require additional work, so should
ideally displace other benchmarks

• Weighted metrics (often referred to as SSI or SSP – sustained system performance)

• Bundle mix of applications and kernels (don’t just use small kernels)

• Weight each one appropriately for workload priorities

• Create single metric for easier evaluation (often done with Geomeans)

• Can allow variation within mix at acceptance- especially good for future hardware

7

Evaluation Metrics – common scenarios

© 2019 Cray, a Hewlett Packard Enterprise company

• Projections are essential for any system with hardware not yet available or for system
sizes beyond what is available

• How to ensure vendors know what they are doing?
• Prior record

• Good explanation of methodology (but don’t expect full details)

• Good relationships

• Full commitments to proposed performance

• Decide whether to allow processor or interconnect vendors to supply benchmark results
• This can lead to identical results submitted by multiple OEMs

• Requiring that OEM runs benchmarks can demonstrate potential for support in the future

• Who will estimate future system performance and commit to it?

• Be careful of applications that have RNG or iterative solvers
• Need iteration counts to be consistent from run to run

• If have to scale out to higher core counts, must know number of iterations for reliable

projection

8

Projections and Estimates

© 2019 Cray, a Hewlett Packard Enterprise company

• Best to allow optimization with guidelines, such as:

• Specify types of optimizations allowed (I/O, communications., OpenMP, etc.)

• Specify that scientific validity of results should not change

• Don’t allow optimizations that are specific to benchmark problem itself

• Require vendor to supply full details of all optimizations made

• Retain ability to reject optimizations if are too complicated etc.

• Legacy apps often just don’t scale up efficiently without being adapted to current or future
hardware (processor types, node counts, and networks)

• Optimizations allows ability to evaluate full potential of system hardware, compiler,
libraries etc.

• Also allows ability to evaluate vendor skill (important if collaboration is rated)

9

Optimization

© 2019 Cray, a Hewlett Packard Enterprise company 10

THE “DO”S AND “DON’T”S

What benchmarkers like (and don’t like) to see…

© 2019 Cray, a Hewlett Packard Enterprise company

Do….

11

• First, figure out what you want, e.g., "the fastest running job, no matter how many nodes
it takes", or "maximum number of jobs on the system"?

• Make benchmark instructions clear
• Check that README does not conflict with main document

• Get directions and files tested by people not involved in the benchmark preparation before you
release them to vendors.

• Remember that your working directory is not a benchmark distribution!

• Supply validation requirements and make sure they are also clear
• e.g. “WRF output should match to within 5%” is not clear

• Watch run length!!! A good benchmark will run for 5 to 60 minutes.

• Under 1 hour allows us more time to debug, optimize and find the best way to run your
applications. But….sub-10 second runs aren’t very useful J

• If you shorten a run, consider evaluating only the post-initialization portion

• Decent problem sizes will differentiate vendors better

© 2019 Cray, a Hewlett Packard Enterprise company

More Do…

12

• Set an appropriate deadline for getting results returned
• Allow enough time for the vendor to do the work

• More complicated RFPs take more time

• If the time is too short, the quality of response goes down

• Remember the impact of year end holidays

• Releasing an RFP in early December and asking for response in early January will not

get you good results

• Make sure any penalties around missing performance targets are clearly defined in
the RFP document (we need to understand risks)

• At Acceptance, be pragmatic about meeting targets

• If the system hardware was not yet in production when estimates were made, must

expect some variation in actual performance. Measures like SSP help with this.

© 2019 Cray, a Hewlett Packard Enterprise company

Don’t…

13

• Don’t add too many requirements that restrict how benchmarks can be run
• For example, don’t specify number of MPI ranks / OpenMP threads to be used

• Allow vendor flexibility to demonstrate best way to run app on proposed architecture

• Don’t assume anything about numbers of CPUs, cores, accelerators per node (unless

they are mandatory requirements for system). This often occurs when too focused on

existing system

• Allow the use of multiple compilers/MPIs etc.

• Don’t ask for large numbers of commitments for no clear purpose
• Only ask for numbers that are clear to interpret and are useful

• Is easy to ask for results for a huge variety of MPI tests, but hard to understand what

the results mean for the real work. And hard for the vendor to provide them

© 2019 Cray, a Hewlett Packard Enterprise company

More Don’t…

14

• Don’t expect output to be bit identical to that from another system
• How much precision do you really need in your results? If input data are based on

measurements with 3 significant digits, don’t ask for 14 digits of accuracy in comparison to

data from original system. Determine what a scientifically valid result is and ask for that.

• If identical runs must give identical output, say so. If runs must give identical output across

all rank and thread counts, say so.

• Code must be written to be bit reproducible in the first place

• This can limit optimizations possible

• Don’t require huge amounts of output data to be returned
• Will you really look at all of it? Can you look at output from just the final step/iteration?

• Can you provide a tool that can postprocess the data before return?

• Large return data requirements can add up to a week to write a drive then ship, which leads

to requests for extension or less time available to dedicate to actual benchmarking work

© 2019 Cray, a Hewlett Packard Enterprise company

• Define your workload before designing the minimal set of benchmark tests to

reflect that workload

• Write the RFP benchmark requirements as clearly as you can, and get them

tested before releasing to vendors

• Define a clear evaluation metric to enable valid comparison among vendors

and to ensure you end up with the system you want

• Allow vendors to show what their proposed system can do to help your

scientific workloads perform as well and as efficiently as possible

15

In Conclusion

Q U E S T I O N S ?

