Exploring and Quantifying How
 Communication Behaviors in Proxies Related to Real Applications

```
PRESENTED BY
Omar Aaziz (Sandia National Labs)
Jeanine Cook (Sandia National Labs)
Jonathan Cook (New Mexico State University)
Courtenay Vaughan (Sandia National Labs)
```

What are proxies?

- They are relatively small programs that attempt to:
- Capture fundamental aspects of a real scientific application

Can we measure fidelity?

- How similar is a proxy to its parent?

What category of measurement to measure similarity?

- I/O
- HW performance (previous work)
- Communication

In this work we choose to focus on communication

What analysis fits this work?

1. Pairwise communication data analysis

- Point to point communication patterns (source, destination)
- Total number of messages sent for each pair
- Using CrayPat tool

2. Communication vector data clustering

- KB/sec - Total size of data transferred (KB) / total execution time (sec)
- MPI KB/sec - Total size of data transferred (KB) / total time spent in MPI (sec)
- Message size histogram data
- Using mpiP tool

Capture point-to-point communicating MPI processes and the total number of calls between these points

- Number of messages sent from a specific source process (rank) to a specific destination process (rank)

Pairwise Pattern Data

- (source, destination)

CrayPat toolset

Area A, Parent (Real) Communication Pairs
Area B, Proxy Communication Pairs
Area C, (Parent \cap Proxy) Communication Pairs

Proxy capturing most of the parent communication

Proxy capturing some of the parent communication

Parent
Proxy NOT capturing any of the parent communication

7 Pairwise communication data preparation

How to compare the Parent/Proxy patterns?

Proxy		
Src	Dst	\#Msg
0	1	$I 52 I 20$
0	10	$I 53422$
0	100	$I 302$
68	64	13020
68	65	13020
68	67	$I 53422$
68	69	$I 302$

Parent		
Src	Dst	\#Msg
0	I	35046
68	64	86
68	67	62
68	69	5887
68	70	24
68	71	29090
68	75	34984
68	91	5916

How to compare the Parent/Proxy patterns?

Solution: Create THREE data sets

- Set 1, Parent filtered by Proxy
- Eliminates extra communication in the parent (that's not in the proxy); parent and proxy have same communicating pairs, but may have different message \#s
- Set 2, Proxy filtered by Parent
- Eliminates extra communication in the proxy (that's not in the parent); parent and proxy have same communicating pairs, but may have different message \#s
- Set 3, Full augmentation for both

Proxy		
Src	Dst	\#Msg
0	1	152120
68	64	0
68	67	153422
68	69	1302
68	70	0
68	71	0
68	75	0
68	91	0

Parent		
Src	Dst	\#Msg
0	1	35046
68	64	86
68	67	62
68	69	5887
68	70	24
68	71	29090
68	75	34984
68	91	5916

	Proxy			\because	Parent		
	Src	Dst	\#Msg		Src	Dst	\#Msg
	0	1	152120		0	1	35046
	0	10	153422		0	10	0
	0	100	1302		0	100	0
-	68	60	13020		68	60	0
$()$	68	64	0		68	64	86
Two data sets with	68	65	13020		68	65	0
the same size	68	67	153422		68	67	62
	68	70	0		68	70	24
	68	71	0		68	71	29090
\cdots	68	75	0		68	75	34984
	68	91	0		68	91	5916

Similarity Metrics:
12 \% Parent Covered by the Proxy

1. Percentage of parent communication that is covered by the proxy - by number of pairs

2. Percentage of proxy communication that is covered by the parent - by number of pairs

Compare the full sets of pairwise communication data in the parent and proxy
Compare that part of the parent's communication that matches the proxy
Compare that part of the proxy's communication that matches the parent
Used:

- PEARSON CORRELATION
- SPEARMAN CORRELATION

List of the Proxy and real applications used in this work:

Proxy	Version	Parent	Version	
SW4lite	2.0	SW4	2.0	Seismic modeling
Nekbone	3.1	Nek5000	17	Thermal transport
SWFFT	1.0	HACC	1.0	Cosmology/FFT
ExaMiniMD	1.0	LAMMPS	17 Aug 20I7	Molecular dynamics

Parent/Proxy	Parent in Proxy		Proxy in Parent		Full Set		Parent in Proxy		Proxy in Parent	
	\#msg	\#pair	\#msg	\#pair	PCorr	SCorr	PCorr	SCorr	PCorr	SCorr
LAMMPS/ ExaMMD	100	100	100	100	0	0	0	0	0	0
Nek5K 2D/ Nekbone 2D	99.9	57.4	37.5	62.8	0	0.06	-0.47	-0.05	0.55	0.93
Nek5K 3D/ Nekbone 3D	99.9	51.4	58.0	68.4	-0.1	-0.05	-0.65	-0.23	0.04	0.49
SW4/ SW4lite	100	100	100	100	1	1	1	I	1	I
HACCl SWFFT	51.7	29.4	71.4	71.4	0.58	0.31	0.61	0.28	0.87	0.81

- 40995 / (\#msgs originally in the parent) $* 100$ \#pair:
- Pairs with non zero messages
- $3 /$ (\#pairs originally in the parent) * 100

Parent		
Src	Dst	\#Msg
0	1	35046
0	10	0
0	100	0
68	60	0
68	65	0
68	67	62
68	69	5887
Total		40995

Parent/Proxy	Parent in Proxy		Proxy in Parent		Full Set		Parent in Proxy		Proxy in Parent	
	\#msg	\#pair	\#msg	\#pair	PCorr	SCorr	PCorr	SCorr	PCorr	SCorr
Parent/ Proxy	\%	\%	\%	\%	+1 to -1					

Pearson and Spearman

- Compare \#messages

Proxy		
Src	Dst	\#Msg
0	1	$I 52 I 20$
0	10	153422
0	100	1302
68	60	13020
68	64	0
68	65	13020
68	67	153422
68	70	0
68	71	0
68	75	0
68	91	0

Parent		
Src	Dst	\#Msg
0	1	35046
0	10	0
0	100	0
68	60	0
68	64	86
68	65	0
68	67	62
68	70	24
68	71	29090
68	75	34984
68	91	5916

Parent/Proxy	Parent in Proxy		Proxy in Parent		Full Set		Parent in Proxy		Proxy in Parent	
	\#msg	\#pair	\#msg	\#pair	PCorr	SCorr	PCorr	SCorr	PCorr	SCorr
LAMMPS/ ExaMMD	100	100	100	100	0	0	0	0	0	0
Nek5K 2D/ Nekbone 2D	99.9	57.4	37.5	62.8	0	0.06	-0.47	-0.05	0.55	0.93
Nek5K 3D/ Nekbone 3D	99.9	51.4	58.0	68.4	-0.1	-0.05	-0.65	-0.23	0.04	0.49
SW4/ SW4lite	100	100	100	100	1	1	1	1	1	1
HACC/ SWFFT	51.7	29.4	71.4	71.4	0.58	0.31	0.61	0.28	0.87	0.81

Used vector of data for each proxy and parent application

- 10 message size buckets
- 3 summary metrics
- Hierarchical clustering

34 Analysis2: Clustering

Message Size

Explored how the communication of a proxy application relates to its parent application

Presented two quantification methods:

- A pairwise communication quantification method that captures how much of one application matches the other
- A message characteristics quantification method that produces a clustering-based relatedness measures of the parent applications and their proxies

Selecting the right input problem is very important

- HACC/SWFFT

We need to understand our current statistics to make better high level conclusions Examine alternative statistics

Incorporate the work on the communication patterns known as the seven dwarves, and relate both parents and proxies to the dwarf patterns

Explore the relatedness using time-varying behavior
Explore more parent/proxy pairs

This research was supported by the Exascale Computing Project (ECP), Project Number 17-SC-20-SC, a collaborative effort of two DOE organizations, the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem including software, applications, hardware, advanced system engineering, and early testbed platforms, to support the nation's exascale computing imperative.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE- NA0003525.

Questions ?
\qquad

