
Exploring and Quantifying How Communication
Behaviors in Proxies Relate to Real Applications

Omar Aaziz
Sandia National Laboratories

Albuquerque, NM 87123
Email: oaaziz@sandia.gov

Jeanine Cook
Sandia National Laboratories

Albuquerque, NM 87123
Email: jeacook@sandia.gov

Jonathan Cook
New Mexico State University

Las Cruces, NM 88003
Email: joncook@nmsu.edu

Courtenay Vaughan
Sandia National Laboratories

Albuquerque, NM 87123
Email: ctvaugh@sandia.gov

Abstract—Proxy applications, or proxies, are simple applica-
tions meant to exercise systems in a way that mimics real appli-
cations (their parents). However, characterizing the relationship
between the behavior of parent and proxy applications is not an
easy task. In prior work [1], we presented a data-driven method-
ology to characterize the relationship between parent and proxy
applications based on collecting runtime data from both and then
using data analytics to find their correspondence or divergence.
We showed that it worked well for hardware counter data, but
our initial attempt using MPI function data was less satisfactory.
In this paper, we present an exploratory effort at making an
improved quantification of the correspondence of communication
behavior for proxies and their respective parent applications.
We present experimental evidence of positive results using four
proxy applications from the current ECP Proxy Application
Suite and their corresponding parent applications (in the ECP
application portfolio). Results show that each proxy analyzed is
representative of its parent with respect to communication data.
In conjunction with our method presented in [1] (correspondence
between computation and memory behavior), we get a strong
understanding of how well a proxy predicts the comprehensive
performance of its parent.

Index Terms—Workload characterization; Proxy applications;
Performance evaluation; Big data

I. INTRODUCTION

Proxy applications, sometimes called mini-apps or rep-
resentative applications, are relatively small programs that
attempt to capture some fundamental aspects of a real, and
much larger, application or class of applications. Being much
smaller, proxy apps are designed to be easily built, installed,
and executed. They typically have few build constraints and
dependencies, simple input specifications, and are thus usable
with little human overhead or time commitment. Their purpose
is to provide an easy-to-use-mechanism to evaluate system
performance, find hardware bottlenecks, perform algorithmic,
parallel, or system design exploration, and in general gain
an understanding of how a particular class of applications
might perform on an HPC system, and how to best design
and configure both the system and the application to maximize
performance.

Underlying all this is the assumption that the proxy app
does indeed capture the essence(s) of the real application.
Recent work has attempted to address this. One group looked
at a specific proxy and parent, e.g., [2], and also explored
generalizing their work [3]. Others investigated extracting

kernels from the real apps instead of comparing them to
proxy apps [4], and others first compared proxy apps to
benchmarks as an intermediate step towards comparing to real
applications [5]. Overall, though, this is an area that needs
more work.

This paper presents an exploration of quantifying the cor-
respondence between parents and proxies specifically in the
communication domain. This work builds on our work of
creating a methodology for measuring parent/proxy corre-
spondence in general. The results presented here show the
potential of our communication comparison methodology and
in conjunction with the comparison method presented in prior
work (computation and memory behavior) we potentially
have a comprehensive, quantitative way of understanding the
representativeness of proxy applications.

Section II discusses our prior work and the context of this
work, Section III presents the methodology we used, Section V
presents our results and analysis, and Sections VI and VII
presents related work and conclusions.

II. BACKGROUND

Proxy applications often keep track of their own time and
computation and output some performance data, but this is
generally domain specific. This can be used to compare various
runs of the proxy itself on different platforms or with different
build and run configurations, but given that the proxy does
not embody the full parent’s computation, it is not self-evident
that, say, the “atoms per second” processing rate in a molecular
dynamics proxy should be the same as that in the parent.
Thus the domain level seems like the wrong level at which
to compare parents and proxies.

In our prior work [1], we proposed a method that evaluates
the performance of both the real and proxy applications at a
level below that of their domain-specific performance: that
of how they exercise the hardware. This avoids the issue
of domain-specific metrics and targets the real question of
performance and correspondence, which is: do they utilize and
exercise the HPC system in similar ways?

In that work we divided the resources used into four do-
mains: basic node (processors and memory), accelerator (e.g.,
GPUs), communication, and storage I/O. We then proposed a
methodology whereby a vector of measurements is collected
in each domain for each run of the parents and proxies

TABLE I
MOST SIGNIFICANT MPIP PER-ROUTINE RAW METRICS

Metric type Description Routines for
Apptime % % of total send, isend, recv, irecv,

application time sendrecv, allreduce, bcast,
wait, waitall, barrier

MPI % % of total send, isend, recv, irecv,
MPI time sendrecv, allreduce, bcast,

wait, waitall, barrier
Count/Time total calls / send, isend, recv, irecv,

application time sendrecv, allreduce, bcast,
wait, waitall, barrier

AvgByte/Time avg bytes per call / send, isend, recv, irecv,
application time sendrecv, allreduce, bcast

Simplified/Reduced mpiP Metrics
all send = send + isend
all recv = recv + irecv
all multi = bcast + sendrecv + allreduce
all wait = wait + waitall + barrier

under investigation; the vector is reduced in size by principal
components analysis (PCA); and then the resulting values
are clustered using a hierarchical clustering algorithm. In this
prior work, we used hardware performance counter data to
show correspondence between parent and proxy with respect
to computation and memory behavior, we used mpiP data for
communication correspondence, and we did not investigate the
accelerator or storage I/O domains.

Although our method worked very well for demonstrating
proxy/parent correspondence for computation and memory
behavior, the mpiP data we chose to represent communication
behavior did not adequately show correspondence or diver-
gence. A quick summary of that result is given here.

Using mpiP, we extracted the Aggregate Time and Aggre-
gate Sent Message Size from the instrumented application and,
for the 20 most used call sites, aggregated the data per MPI
function, then computed the metrics shown in Table I. The
functions listed are the only MPI functions with significant
usage across our suite of applications.

Since different applications use different MPI functions,
many of the collected metrics in Table I are zero. Further,
some proxy/parent applications do not use the same MPI
functions, and even use different types of communication
primitives (collectives versus peer-to-peer). To correct for
this disparity, we reduced and simplified the mpiP data by
combining data from categorically similar MPI functions into
a generic category, shown at the bottom of the table. Our four
categories are: send, receive, multi-way communication, and
wait. These categories reduce the mpiP metrics into a more
consistent set of category metrics across all of the applications.
Our communication domain data vector, then, was sixteen
values—the four metrics for each of the four categories.

We ran our experiments on an Intel Broadwell system
using four proxy/parent pairs (will be described further in
Section V):

• SW4lite and SW4 (seismic modeling)
• Nekbone and Nek5000 (thermal transport)
• SWFFT and HACC (cosmology/FFT)

�
�
�
�
�
��
�

�
�
�
�
�
��
�

�
�
�
�
�
��
�

�
�
�
�
�
��
�

�
�
�
�
�
��
�

�
�
�
�
��
�

�
�
�
�
��
�

�
�
�
�
��
�

�
�
�
�
��
�

�
�
�
�
��
�

�
�
�
���
�
�
�
�
��
�

�
�
�
���
�
�
�
�
��
�

�
�
�
���
�
�
�
�
��
�

�
�
�
���
�
�
�
�
��
�

�
�
�
���
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
�
�
�
��
��
�
��
�

�
�
�
�
��
��
�
��
�

�
�
�
�
��
��
�
��
�

�
�
�
�
��
��
�
��
�

�
�
�
�
��
��
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
�
��
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
��
�
�

SWFFT HACC SW4lite SW4H2 SW4H1 Nek5K LAMMPS Exa.MD Nekbone

Fig. 1. Communication Similarity, Broadwell

• ExaMiniMD and LAMMPS (molecular dynamics)

Although we ran each application, both parent and proxy, over
a variety of configurations (e.g., number of nodes; number
of cores/node), we chose one configuration (128 MPI ranks
distributed across 8 nodes, using 16 cores per node) and input
size (Table IV) for data analysis since we are trying to under-
stand similarity under equivalent conditions for both proxy and
parent application. The input used was intended to represent
an Exascale challenge problem. For each configuration and for
each application, we collected data for five distinct runs. Each
run’s data is kept independent of other runs.

Figure 1 shows the clustering that results from the com-
munication (MPI) data, for the Broadwell platform only. Note
first the scale of the height axis, and how far away the final
two clusterings are from the lower clusterings. This indicates
very little similarity at these levels (hierarchical clustering will
always connect everything, eventually). Even the connecting
of the SW4* cluster and the Nek*/LAMMPS/ExaMiniMD
cluster is, relatively, quite high on the axis. In looking at
application and proxy implementations, some do use the same
MPI communication primitives and style, and these cluster
well together. Others, because they were written separately,
may try to implement a similar model of communication, but
they do so with different MPI primitives, and end up having
very different aggregate statistics over the mpiP profile data.

We viewed this result as indicating that our basic attempt
at abstracting the mpiP data away from specific MPI routines
was not enough to actually capture an abstract-enough model
of communication where different applications might end up
with similar data. This motivated the approach presented in
this paper that attempts to characterize communication patterns
and other detailed communication characteristics to show
correspondence in communication behavior between parent
and proxy applications.

Parent (Real)

Comm. Pairs

Proxy

Comm. Pairs

Comm. Pairs

in Both
A

B
C

Parent

Proxy capturing

most of parent comm

Parent

Proxy capturing

a part of parent comm

Parent

Proxy with anomalous

comm behavior

(1) (2) (3) (4)

Fig. 2. Relationships Between Pairwise Communication in a Parent (Real) and Proxy Application.

III. METHODOLOGY

The basis of our methodology for characterizing the corre-
spondence of proxy/parent communication comprises similar-
ity characterization of: (1) communication patterns, and (2) a
communication vector of values gathered from mpiP output.
We apply different similarity measures to communication
patterns and mpiP metric vectors.

A. Pairwise Pattern Data

We generate a communication pattern for each application
using the CrayPat toolset. These communication patterns are
generated from the peer-to-peer statistics which capture point-
to-point communicating MPI processes and the total number of
calls between these points. We then use the CrayPat Appren-
tice2 tool to visualize the data and generate a plot that clearly
shows frequency of communication between MPI processes,
which realizes a communication pattern. Apprentice2 is also
able to dump the data from the plot into a CSV file, which
allows us to do additional analysis on the data.

This point-to-point data is recorded as the number of mes-
sages sent from a specific source process (rank) to a specific
destination process (rank). We use this data in the formally
defined metrics below.

Figure 2 shows the relationships that can occur between the
set of communicating process pairs in a parent application and
its proxy. Figure 2.1 defines the relationships, and we label the
unique areas A, B, and C for future reference. Figures 2.2–2.4
show three possible relationships: a proxy capturing most of a
parent’s communication; a proxy capturing only a portion of
the parent communication (possibly intentional); and a proxy
having communication that does not match anything in the par-
ent. This is only an abstract view of pairwise communication
and does not address the volume of communication between
pairs, nor the time-varying behavior of the communication.
Typically, the expectation is that area B is small or nonexistant,
area C is large, and area A is small, or well-defined if the proxy
is purposely meant to not model it.

Let N be the set of processes in the parallel computation,
where n ∈ N is an identifying integer of the process (e.g., its
MPI rank). We assume that the parent and proxy applications
are executed with the same N .

Let R be the set of pairwise non-zero message counts in
the parent (real) application, where ms,v ∈ R is the number
of messages sent from process s to process v, s ∈ N and

v ∈ N . The shorthand mp will be used as well, where p is
the tuple (s, v). R does not contain zero-valued elements, so
for any (s, v) that has no messages, there is no element in
R. Similarly, let P be the set of pairwise non-zero message
counts in the proxy application. In Figure 2.1, R is areas A
and C, and P is areas B and C, though each with their own
data.

We also form sets of each of the parent and proxy appli-
cation data filtered and zero-padded by the other. The first is
defined as:

RP =

{
mp ∈ R if m

′

p ∈ P

0p if p /∈ R ∧ p ∈ P

That is, RP is R with elements dropped that do not occur in
P , and augmented with zero elements that occur in P but not
in R. We call it R filtered by P . The reverse, P filtered by
R, is also defined:

PR =

{
mp ∈ P if m

′

p ∈ R

0p if p /∈ P ∧ p ∈ R

Note that |RP | = |P | and |PR| = |R|. In Figure 2.1, RP is
parent data in area C and 0’s in area B, and PR is proxy data
in area C and 0’s in area A.

We also define the full augmentation of both sets, adding
zero elements where the element exists in the other but not in
it:

RA =

{
mp ∈ R

0p if p /∈ R ∧ p ∈ P

PA =

{
mp ∈ P

0p if p /∈ P ∧ p ∈ R

Note that |RA| = |PA|, which is greater than or equal to both
|R| and |P |. In Figure 2.1, RA is parent data in areas A and
C, and 0’s in area B; and PA is proxy data in areas B and C,
and 0’s in area A.

With these defined and constructed sets, we can then define
our metrics that attempt to measure the similarity between the
parent and proxy communication data. These metrics are:

1) the percentage of parent communication that is covered
by the proxy, by number of messages and by number of
process pairs;

#msg =

∑
mp ∈ RP∑
mp ∈ R

∗ 100

#pair =
|{mp ∈ RP s.t. mp 6= 0}|

|R|
∗ 100

2) the percentage of proxy communication that is covered
by the parent, by number of messages and by number
of process pairs;

#msg =

∑
mp ∈ PR∑
mp ∈ P

∗ 100

#pair =
|{mp ∈ PR s.t. mp 6= 0}|

|P |
∗ 100

3) statistical/correlation metrics comparing RA and PA;
4) statistical/correlation metrics comparing RP and P ;
5) statistical/correlation metrics comparing R and PR;
The percentages in 1 and 2 are capturing how much commu-

nication in one is represented, or “covered”, by the other—i.e.,
the pairs communicate in both. In relation to Figure 2.1, the
formulae in 1 capture the amount of parent communication in
C in relation to its total communication in A and C. The first
computes this over the number of messages, and the second
computes this over the count of communicating pairs in each
area. The formulae in 2 are analogous, over B and C.

In items 3-5, the tests in 3 compare the full sets of pairwise
communication data in the parent and proxy, the tests in
4 compare that part of the parent’s communication that is
“matches” the proxy, and the tests in 5 compare that part of
the proxy’s communication that matches the real. These are
different views on the way the parent and proxy might be
similar and different.

B. Vector Data and Clustering

The second part of our similarity characterization involves
gathering a vector of data from mpiP for each proxy and
parent application. We use a modified version (Section IV)
of the mpiP lightweight profiling library [6] to collect basic
communication metrics for our applications. MpiP collects
statistical information about MPI functions (per call site) and
produces a report at the end of the application’s execution.
From the mpiP output, we form a communication data vector
that is then used as input to a clustering algorithm. Specifically,
our vector for each application comprises data that represents
a histogram of message size and respective frequency. We also
include three summary metrics:

1) total number of messages
2) KB/sec - total size of data transferred (KB) divided by

total execution time (sec)
3) MPI KB/sec - total size of data transferred (KB) divided

by total time spent in MPI (sec)
Clustering algorithms are sensitive to large dimensionality

data; principal component analysis (PCA) reduces the di-
mensionality of the data input. Because our communication
vectors comprise only 13 values (10 message size buckets; 3
summary metrics), PCA is not necessary. We use hierarchical
clustering [7] to understand similarity between proxy/parent
pairs. We use the elbow method [8] for hierarchical clustering
to determine the optimal number of clusters for the hierarchical

clustering algorithm. Our hypotheses expect that proxy apps
cluster with the real apps that they represent, and that the real
apps do not cluster together, particularly if they are not of the
same dwarf classification [9].

IV. EXPERIMENTAL PLATFORM

For this work, we use an Intel Broadwell (Xeon E5-2695 v4)
platform. Communication patterns are not hardware-dependent
so we use only a single platform here. Table II presents the
architecture details of the system used.

We use the Intel 18 compiler for all proxy/parent pairs;
compiler flags are kept as consistent as possible across each
proxy/parent pair and we replicate the compiler flags that are
present in the distribution build files as close as possible.

As mentioned previously, we execute each proxy and appli-
cation in several different scaling configurations, but always
pin only one process per core. We report data only for a single
configuration per application, each of which uses 128 MPI
ranks distributed across 8 nodes, using 16 cores per node.

A. Data Collection Tools

For this study, we are using a modified version of mpiP.
The standard version of mpiP collects information on point
to point and collective communications that are binned by the
size of the messages. For example, one such bin would be
messages that are between 256 and 511 bytes. For each bin,
mpiP calculates the volume of communication in that bin by
adding the length of each message that falls within that bin.
At the end of the simulation, the top twenty bins are displayed
ranked by volume. In our modified version, we display all of
the bins and also keep track of the number of messages that
are in each bin.

B. Proxy and Parent Applications

This work is done as part of the DOE Exascale Computing
Project (ECP) [10]. Therefore, we use applications that are
being used in ECP Application Development [11] projects and
use proxy applications that are in the current ECP Proxy App
Suite 1.0 [12]. For this work, we chose the following four ECP
proxy/parent application pairs:

• SW4lite and SW4 (seismic modeling)
• Nekbone and Nek5000 (thermal transport)
• SWFFT and HACC (cosmology/FFT)
• ExaMiniMD and LAMMPS (molecular dynamics)
SW4 [13], [14] is a geodynamics code that enables 3D

modeling of surface topologies to understand the physics
and impacts of earthquakes and other seismological events.
The seismic wave equations are solved on locations that
are specified either by Cartesian or geographic coordinates.
The finite difference wave equations numerically simulate
wave propagation to fourth-order, which is very accurate for
calculating surface waves. Cartesian local mesh refinement is
used to improve accuracy in regions near the free surface,
where more resolution is needed to solve short wavelengths
and maintain accuracy. SW4lite [15] is a scaled-down version
of SW4 that has limited seismic modeling capabilities, but

TABLE II
HARDWARE CHARACTERISTICS OF BROADWELL PLATFORM

Component Details
L1 data cache (per core) 32 KB, 8 way, 64 sets, 64B line size
L1 instr. cache (per core) 32 KB, 8 way, 64 sets, 64B line size
L2 cache (per core) 256 kB, 8 way, 512 sets, 64B line size
L3 cache (shared) 45 MB, 16–20way, 64B line size
Memory (per node) 128 GB DDR4-2400 MHz
Cores/threads 18/36
Sockets/node 2
Total nodes 1122
Interconnect Intel OPA and Mellanox ConnectX4
Max Memory BW 76.8 GB/sec

does solve the elastic wave equation and uses some of the same
numerical kernels as those implemented in SW4. Its limited
modeling capability limits the types of surfaces and areas that
can be used in the simulations. SW4lite is a close enough
representation of SW4 that it is used to explore performance
optimization, particularly with respect to memory layout and
threading, but it is also representative of the computation and
communication present in SW4.

Nek5000 [16], [17] is a spectral element code designed for
large eddy simulation (LES) and direct numerical simulation
(DNS) of turbulence in complex domains. It simulates thermal
transport on a full range of scales set by the geometry
encountered within a reactor. Nek5000 has a broad range of
applications including vascular flow, ocean modeling, combus-
tion, heat transfer enhancement, stability analysis and MHD
(magnetohydrodynamic) flows. Nekbone [18] implements the
computationally intensive linear solvers that account for a
large percentage of the Nek5000 run time, as well as the com-
munication costs required for nearest-neighbor data exchanges
and vector reductions. The Nekbone kernel is embedded in a
conjugate gradient iteration to solve the 3D Poisson equation.
Preconditioning is either a simple diagonal scaling (simpler
than Nek5000) or a spectral element multigrid on a block
or linear geometry which is more similar to the multigrid
structure found in Nek5000. In this paper, we run Nek5000
and Nekbone using 3D and 2D distributions. Since Nekbone
designed to simulate 3D problems, we changed the processors
breakdown to reflect the 2D processor map by setting the z-
axis to 1.

The Hardware Accelerated Cosmology Code (HACC) [19]
is an N-body framework that simulates the evolution of mass
in the universe and its structure within the context of dark
matter and dark energy. It uses particle mesh techniques,
splitting the force calculation into a grid-based spectral particle
mesh component for medium to long-range interactions and
direct particle-to-particle solvers for short-range interactions.
The long-range solvers implement an underlying 3D FFT
that is domain-decomposed to 2D. SWFFT [20] is the 3D
FFT that is implemented in HACC. Since this FFT accounts
for a large portion of the HACC execution time, SWFFT
serves as a proxy for HACC. SWFFT replicates the transform
and is representative of the computation and communication

TABLE III
PROXY/PARENT VERSION INFORMATION

Proxy Version Parent Version
SW4lite 2.0 SW4 2.0
Nekbone 3.1 Nek5000 17
SWFFT 1.0 HACC 1.0

ExaMiniMD 1.0 LAMMPS 17 Aug 2017

involved.
LAMMPS (Large-scale Atomic/Molecular Massively Paral-

lel Simulator) [21] is a classical molecular dynamics code that
models particles in solid, liquid, and gas states. A particle can
range from a single atom to a large composition of material.
LAMMPS integrates Newton’s equations of motion to model
particle interaction, using lists to track neighboring particles. It
implements mostly short-range solvers, but does include some
methods for long-range particle interactions. Like LAMMPS,
ExaMiniMD [22], which is a proxy for LAMMPS, uses spatial
domain decomposition. But compared to LAMMPS, ExaMin-
iMD’s feature set is extremely limited, and only three types of
interactions (Lennard-Jones/ EAM/SNAP) are available. The
SNAP interaction is a much more complicated and computa-
tionally expensive potential that attempts to approach quantum
chemistry accuracy when modeling metals and other materials.
ExaMiniMD and LAMMPS both use neighbor lists for the
force calculation. ExaMiniMD is intended to represent both the
computation (including memory behavior) and communication
that is implemented in LAMMPS.

The problems and input sizes we use for data collection are
shown in Table IV and proxy/parent application versions that
we use in this work are in Table III. We define problems and
input sizes based either on conversations with developers or
from The problems and input sizes we use for data collection
are shown in Table IV and proxy/parent application versions
that we use in this work are in Table III. We define problems
and input sizes based either on conversations with developers
or from development team performance reports. In all cases,
we attempt to define problems that are pertinent in the exascale
timeframe and we map application problems to their respective
proxies to be as consistent as possible. While we realize
that the characterization and subsequent clustering results and
communication patterns may be sensitive to input, a study of
this sensitivity is beyond the scope of this paper and will be
done in future work.

C. Statistical Analyses

For our statistical analyses, we use the principal component
analysis and clustering algorithms provided by the R Statistical
Computing Tool [23]. We use hierarchical clustering, which is
an unsupervised machine-learning technique, and we use the
elbow method to select the optimal number of clusters to use
as a parameter to the clustering algorithm. The hierarchical
clustering algorithm is agglomerative and uses the Ward [7]
cluster criterion.

TABLE IV
PROXY/PARENT PROBLEMS/INPUT SIZES

Proxy / Parent Problem/Input size
SW4lite / SW4 LOH.1-h50.in, LOH.1-h50, time=9

Nekbone 2D 2D decompisition; polynomial order=8;
spectral multigrid=off

/ max local elements per MPI rank=300
Nek5000 2D eddy uv, with Dim=2; polynomial order=8

max local elements per MPI rank=300
Nekbone 3D Dim=3; polynomial order=8;

spectral multigrid=off
/ max local elements per MPI rank=300

Nek5000 3D 3dbox, with Dim=3; polynomial order=8
max local elements per MPI rank=300

SWFFT / n repetitions=100; ngx=1024
HACC steps=100; ngx=1024

ExaMiniMD units=lj; nx, ny, nz=100; Timestep=0.005;
/ LAMMPS Run=18000 (single- and multinode)

V. RESULTS

A. Pairwise Communication Data Results

Figures 3 to 7 show side-by-side heatmaps of the pairwise
communication for our parent / proxy application pairs. Sim-
ilarities and differences show up readily. Note that the color
scale is auto-generated and spans whatever the value range is
for the particular image; in some cases this is thousands, while
for others (e.g., exaMiniMD) it is only one. These figures are
for visualizing the parent and proxy communication patterns,
similarities, and difference, but most of the discussion below
is over the metrics.

Table V shows the results from the defined metrics for
the pairwise communication data. We first discuss the first
four metrics, which are the percentages of communication not
found in the other related application (parent or proxy), and
then discuss the correlation metrics.

The pairs of LAMMPS / ExaminiMD and SW4 / SW4lite
both have exactly the same set of process pairs communicating
for the parents and proxies, and so in relation to Figure 2.1,
there are no areas A and B for them, meaning that nothing is
filtered out in creating RP and PR. Thus, the four percentage
metrics are all 100, even though the message counts are not
equal between the parent and proxy.

The first two metrics for Nek5000 2D/Nekbone 2D show
that although only about 57% of communicating pairs in
Nek5000 do indeed communicate in Nekbone, this is the true
core of the parent communication, since it captures 99.9% of
the messages. On the other hand, as shown in the next two
metrics, Nekbone has only 63% of its communicating pairs
being represented in Nek5000, and this accounts for only about
37% of the communication of Nekbone. So while Nekbone
does capture the major portion of Nek5000’s communication,
it has a large amount of communication itself that does not
represent Nek5000, its parent. This can be seen in the heatmap
figure as well, Figure 7.

The results for Nek5000 3D/Nekbone 3D are somewhat
similar to the 2D case, but different in some of the correlation

metrics. in Nek5000 3D, 51% of the communicating pairs are
found in Nekbone 3D and this accounts for about 99.9% of
the messages. This indicates that the extra communication in
Nek5000 have low counts. From the third and fourth metrics,
we see that about 68% of Nekbone 3D’s communicating pairs
are in Nek5000 and this accounts for 58% of the Nekbone
communication. As in the 2D case, Nekbone does capture
a major portion of Nek5000’s communication, but it does a
large amount of communication that is not in its parent. The
heatmap figure shows this as well (Figure 7.

Looking at the first four metrics for the pair HACC /
SWFFT, we see a high degree of difference between the two.
Only 29% of communicating pairs in HACC do communicate
in SWFFT, with this accounting for about half (52%) of all
HACC messages. On the other side, about 71% of SWFFT
communication is representative of HACC. SWFFT has al-
most exactly equal numbers of messages between all of its
communicating process pairs, and so the percentage is the
same for both the pair count and the message count metrics.
Since SWFFT is meant to only capture one core portion of
HACC (the FFT), it makes sense that it would miss much of
HACC’s communication; however, the fairly high percentage
(29%) of SWFFT that is not in HACC may be indicating that
it is not doing as good of job even on that core that it should
be representing.

We now discuss the statistical and correlation test metrics
for the parent / proxy pairs. Although not shown in the table,
for all three set comparisons (RA, PA), (R,PR), and (RP , P),
we performed the Wilcoxon Signed-Rank test and a paired
T-test as statistical tests of similarity. For all of the proxy /
parent pairs, both of the tests give a p-value of essentially
zero (e.g., ∼ 1e−20), meaning that they always detect a very
significant difference between the populations. This is because
the message counts are significantly different. Even for SW4
and SW4lite, which are almost identical, we observed that,
e.g., SW4 sent exactly and always 3,347 messages between
each pair of communicating processes, while SW4lite sent
exactly and always 3,345 messages. With zero variance, these
two populations are very significantly different, statistically,
even though we would want to say that they are essentially
the same.

This leads us to conclude that this type of statistical test
is inappropriate for these comparisons, and so we now focus
on the Pearson and Spearman correlation results over our data
sets. Pearson is a linear correlation of the values in the data,
while Spearman is a correlation over the ranks and thus can
capture a non-linear correlation.

For LAMMPS / ExaMiniMD and SW4 / SW4lite, which
both had percentage metrics of 100, the two pairs have
exactly opposite correlation metrics; LAMMPS and ExaM-
iniMD have zero correlation, while SW4 and SW4lite have
perfect correlation. As explained above, SW4 and SW4lite
have perfectly constant numbers of messages over exactly the
same communicating pairs, and so they obviously correlate
perfectly. LAMMPS has a very bimodal distribution of mes-
sage counts over its communicating pairs, while ExaMiniMD

TABLE V
METRICS FOR ALL PARENT / PROXY PAIRS. PCOR IS PEARSON CORRELATION; SCOR IS SPEARMAN CORRELATION.

Parent in Proxy Proxy in Parent RA, PA R,PR RP , P
Parent/Proxy #msg #pair #msg #pair PCor SCor PCor SCor PCor SCor
LAMMPS/ExaMMD 100 100 100 100 0 0 0 0 0 0
Nek5K 2D/Nekbone 2D 99.9 57.4 37.5 62.8 0 0.06 -0.47 -0.05 0.55 0.93
Nek5K 3D/Nekbone 3D 99.9 51.4 58.0 68.4 -0.1 -0.05 -0.65 -0.23 0.04 0.49
SW4/SW4lite 100 100 100 100 1 1 1 1 1 1
HACC/SWFFT 51.7 29.4 71.4 71.4 0.58 0.31 0.61 0.28 0.87 0.81

LAMMPS exaMiniMD
Fig. 3. LAMMPS and exaMiniMD, Point to point message count.

HACC SWFFT
Fig. 4. SWFFT and HACC, Point to point message count.

SW4 SW4lite
Fig. 5. SW4 and SW4lite, Point to point message count.

Nek5000 Nekbone
Fig. 6. Nek5000 and Nekbone, Point to point message count, 3D configuration.

Nek5000 Nekbone
Fig. 7. Nek5000 and Nekbone, Point to point message count, 2D configuration.

always has message counts of either 20,702 or 20,703, which
is essentially constant. This causes the correlation (between
a bimodal function and a constant function) to be essentially
0. This shows the value in both the percentage metrics and
the correlation metrics together; using only one can give the
wrong understanding.

For Nek5000 / Nekbone we compare both 2D and 3D
executions, though recall that Nekbone 2D was approximated
by minimizing the z-axis. The percentage metrics are similar
in both cases, with almost 100% of the messages in the
parent covered by the proxy even though the proxy does not
cover many of the low-frequency communicating pairs. In
both cases the proxy has significant communication that is
not in the parent, and this is higher in the 2D case (63.5%
of messages), as might be expected given that Nekbone does
not inherently implement 2D. The correlation metrics across
both cases show no correlation for the RA, PA sets, but exhibit
an interesting “flip” in the two filtered scenarios, with R,PR

showing somewhat negative correlation and RP , P showing
some positive correlations, including a very high Spearman
correlation for the 2D case. In looking at Figures 6 and 7, this
flip is probably related to the heavy red bands of communica-
tion in Nekbone along the diagonal, which somewhat overlap
some green communication patterns in Nek5000. Filtering
these two only by the parent (Nek5000) results in some
opposing-value (negative) correlation, while filtering these by
the proxy (Nekbone) results in some positive correlation. We
have not yet further investigated the exact cause and so this is
a supposition based on the visual evidence.

For HACC / SWFFT, again the highest correlations are
for RP , P , which make sense, since SWFFT is only meant
to capture a portion of HACC. With the Pearson (linear)
correlation being highest (0.87), this indicates that SWFFT
does a pretty good job of capturing this portion, such that
a simpler linear correlation holds up. The strong relation
between this portion is also probably why the correlations for
RA, PA and R,PR are still reasonably positive.

B. Communication Vector Data Clustering

Figure 8 shows the clustering result. Note that this data is
collected from a single run of each application since mpiP im-
plements software-based counting that remains constant across
runs. In a dendrogram, the y-axis is the connection height,
which is a measure of similarity–the lower the connection
height, the higher the similarity of the runs below it. First note
that at the lowest level (highest similarity), LAMMPS and Ex-
aMiniMD cluster together, as do HACC and SWFFT and SW4
and SW4lite (although this is difficult to see given the scale).
Nekbone does not cluster with Nek5000, rather Nekbone 2D
and 3D cluster together. But notice that Nekbone 2D and 3D
are not as similar as LAMMPS/ExaMiniMD, HACC/SWFFT,
SW4/SW4lite as its cluster is at about the same height as the
cluster that contains all of these proxy/parent pairs. Nek5000
2D is very much an outlier and does not cluster with any
applications except at a very high level. Nek5000 3D is similar
in that it clusters with all of the other applications (except

.

0
50

00
00

10
00

00
0

15
00

00
0

●

●

N
ek

50
00

 2
D

●

●

N
ek

50
00

 3
D

●

●

●

N
ek

bo
ne

 2
D

●

N
ek

bo
ne

 3
D

●

●●

●

sw
4

●

sw
4l

ite

●

●

H
A

C
C

●

S
W

F
F

T

●

●

E
X

A
m

in
iM

D

●

LA
M

M
P

S

Fig. 8. Communication Similarity, Clustering Message Size and Frequency

Nek5000 2D at a relatively high cluster height. Both Nek-
bone and particularly Nek5000 appear to have communication
(communicating pairs and message frequency) that is very
different than the other applications.

The idea behind doing clustering is to determine if a simple
method such as this could accurately detect communication
similarity. The vector used for clustering does not contain
any information about communication pattern, only message
size and frequency for each size histogram bin. Looking
at the data in Table V, the clusters do seem to somewhat
agree for all proxy/parent pairs except Nek5000 and Nekbone,
which requires more exploration to adequately explain. We
will continue to further examine communication vectors in
conjunction with our statistical measures to really determine
if simple clustering of key metrics can accurately quantify
similarity.

VI. RELATED WORK

Although there is a lot of older work done in charac-
terization of application communication [24]–[30], relatively
little work has been done in characterizing the similarity of
communication patterns [31]. We outline this work and its
distinction from ours below.

In [31], Ma et al. present a method for characterizing
similarity in communication patterns of parallel applications
that use MPI, then they apply this method to four of the NAS
parallel benchmarks. Their method uses a linear correlation
coefficient on ranked metric values in conjunction with a
graph isomorphism metric. They construct a graph based on
communicating pairs (source, destination), then use graph
isomorphic degree to determine the similarity between graphs.

The metrics they use for correlation are temporal, which
reflects message rates, volume for representing message size,
and spatial that captures communication locality in terms of
communicating pairs. Their results are mixed with three out
of six benchmark comparisons showing strong similarity and
three out of six showing weak, but some similarity. In contrast,
our proposed method is much simpler, using data directly
gathered from mpiP. We do non-linear correlation, which we
believe is key, and use real applications in addition to proxies
(similar to benchmarks).

The work presented in [32], [33] focuses on matching
application communication patterns to a library of commonly
observed patterns. Their methods are based on pattern match-
ing; they do not examine pattern similarity. Therefore, this
work is peripherally related, but not applicable to our task
of interest, which is determining similarity in communication
patterns.

VII. CONCLUSION AND FUTURE WORK

We presented an exploration into quantifying how the
communication of a proxy application relates to its parent
application. This was done in two ways.

One, quantifying over pairwise communication data, with
metrics capturing how much of one application matches the
other, and with correlation metrics over the message counts
of communicating pairs. Variations of the correlations were
performed over parent-centric and proxy-centric views, with
the intent of capturing how much of the parent is represented
in the proxy, and if the proxy has communication behavior
outside that of the parent. A wide variety of relationships was
observed.

Two, quantifying over message characteristics, by creating
a application characteristic vector with values representing a
histogram of message size and with values capturing overall
message rates. These vectors were the input into a hierarchical
clustering algorithm to produce clustering-based relatedness
measures of the parent applications and their proxies. Most
parents and proxies clustered closely together in this view,
with Nek5000 and Nekbone being the one exception.

This work needs to be expanded in several ways. One is to
incorporate the work on the communication patterns known
as the seven dwarves [9], and relate both parents and proxies
to the dwarf patterns. Two is to provide a way to make
easier sense of the metrics and combine them into higher level
concepts. Many aspects of communication were not captured
in our metrics and should be explored as to whether they
are important or not; one prominent one is the time-varying
behavior—parents and proxies could look similar in terms
of the metrics we present and yet have radically different
time-varying behavior over the execution period. An important
aspect of this is whether or not the communication reaches a
bottleneck that affects performance, and if this is captured in
the proxy.

VIII. ACKNOWLEDGEMENT

This research was supported by the Exascale Computing
Project (ECP), Project Number 17-SC-20-SC, a collaborative

effort of two DOE organizations, the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem
including software, applications, hardware, advanced system
engineering, and early testbed platforms, to support the na-
tion’s exascale computing imperative.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE- NA0003525.

REFERENCES

[1] O. Aaziz, J. Cook, J. Cook, T. Juedeman, D. Richards, and C. Vaughan,
“A Methodology for Characterizing the Correspondence Between Real
and Proxy Applications,” in To appear in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), 2018.

[2] P. T. Lin, M. A. Heroux, R. F. Barrett, and A. B. Williams, “Assessing
a mini-application as a performance proxy for a finite element method
engineering application,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 17, pp. 5374–5389, 2015, cpe.3587. [Online].
Available: http://dx.doi.org/10.1002/cpe.3587

[3] R. Barrett, P. Crozier, D. Doerfler, M. Heroux, P. Lin, H. Thornquist,
T. Trucano, and C. Vaughan, “Assessing the role of mini-applications in
predicting key performance characteristics of scientific and engineering
applications,” Journal of Parallel and Distributed Computing, vol. 75,
no. Supplement C, pp. 107 – 122, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001695

[4] Y. Kim, J. M. Dennis, and C. Kerr, “Assessing representativeness
of kernels using descriptive statistics,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2017, pp. 818–825.

[5] M. Tsuji, W. T. C. Kramer, and M. Sato, “A performance projection of
mini-applications onto benchmarks toward the performance projection
of real-applications,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), Sept 2017, pp. 826–833.

[6] J. S. Vetter and M. O. McCracken, “Statistical scalability
analysis of communication operations in distributed applications,”
in Proceedings of the Eighth ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, ser. PPoPP ’01. New
York, NY, USA: ACM, 2001, pp. 123–132. [Online]. Available:
http://doi.acm.org/10.1145/379539.379590

[7] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
CoRR, vol. abs/1109.2378, 2011.

[8] A. E. Zambelli, “A data-driven approach to estimating the
number of clusters in hierarchical clustering,” F1000Research,
vol. 5, pp. ISCB Comm J–2809, 2016. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373427/

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” Electrical Engineering and Computer Sciences
University of California at Berkeley, Tech. Rep. UCB/EECS-2006-183,
2006.

[10] https://www.exascaleproject.org, “Exascale computing project.”
[Online]. Available: https://www.exascaleproject.org

[11] https://www.exascaleproject.org/focus area/application-development,
“Ecp application development.” [Online]. Available:
https://www.exascaleproject.org/focus area/application-development

[12] https://proxyapps.exascaleproject.org, “Exascale proxy applications.”
[Online]. Available: https://proxyapps.exascaleproject.org

[13] B. Sjrogreen and N. A. Petersson, “A fourth order accurate finite differ-
ence scheme for the elastic wave equation in second order formulation,”
Journal Of Scientific Computing, vol. 52, no. 1, 2011.

[14] N. Petersson and B. Sjrogreen, “Sw4 v2.0. computational infrastructure
of geodynamics,” 2017.

[15] https://github.com/geodynamics/sw4lite, “Sw4lite.” [Online]. Available:
https://github.com/geodynamics/sw4lite

[16] https://nek5000.mcs.anl.gov, “Nek5000.” [Online]. Available:
https://nek5000.mcs.anl.gov

[17] H. M. Tufo and P. F. Fischer, “Terascale spectral element algorithms and
implementations,” in Proceedings of the 1999 ACM/IEEE Conference
on Supercomputing, ser. SC ’99. New York, NY, USA: ACM, 1999.
[Online]. Available: http://doi.acm.org/10.1145/331532.331599

[18] https://asc.llnl.gov/CORAL bench-
marks/Summaries/Nekbone Summary v2.3.4.1.pdf, “Nek-
bone.” [Online]. Available: https://asc.llnl.gov/CORAL-
benchmarks/Summaries/Nekbone Summary v2.3.4.1.pdf

[19] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, D. Daniel, P. Fasel,
and Z. Lukić, “Hacc: Extreme scaling and performance across diverse
architectures,” Commun. ACM, vol. 60, no. 1, pp. 97–104, Dec. 2016.
[Online]. Available: http://doi.acm.org/10.1145/3015569

[20] https://xgitlab.cels.anl.gov/hacc/SWFFT, “Swfft (hacc).” [Online].
Available: https://xgitlab.cels.anl.gov/hacc/SWFFT

[21] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, Mar. 1995.
[Online]. Available: http://dx.doi.org/10.1006/jcph.1995.1039

[22] A. P. Thompson and C. R. Trott, “A brief description of the kokkos
implementation of the snap potential in examinimd.” 11 2017.

[23] https://www.r-project.org, “The r project for statistical computing.”
[Online]. Available: https://www.r-project.org

[24] S. Chodnekar, V. Srinivasan, A. S. Vaidya, A. Sivasubramaniam, and
C. R. Das, “Towards a communication characterization methodology
for parallel applications,” in HPCA, 1997.

[25] R. Zamani and A. Afsahi, “Communication characteristics of message-
passing scientific and engineering applciations,” in Proceedings of
the International Conference on Parallel and Distributed Computing
Systems (PDCS), ser. PDCS ’05, Phoenix, AZ, USA, 2005, pp. 644–
649.

[26] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale
application communication requirements for a reconfigurable hybrid in-
terconnect,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, Nov 2005, pp. 17–17.

[27] J. Kim and D. J. Lilja, “Characterization of communication patterns in
message-passing parallel scientific application programs,” in Proceed-
ings of the Second International Workshop on Network-Based Parallel
Computing: Communication, Architecture, and Applications, ser.
CANPC ’98. London, UK, UK: Springer-Verlag, 1998, pp. 202–216.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646092.680542

[28] J. S. Vetter and F. Mueller, “Communication characteristics of large-
scale scientific applications for contemporary cluster architectures,” in
Proceedings 16th International Parallel and Distributed Processing
Symposium, April 2002, pp. 10 pp–.

[29] S. Karlsson and M. Brorsson, “A comparative characterization of
communication patterns in applications using mpi and shared memory
on an ibm sp2,” in Proceedings of the Second International
Workshop on Network-Based Parallel Computing: Communication,
Architecture, and Applications, ser. CANPC ’98. London, UK,
UK: Springer-Verlag, 1998, pp. 189–201. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646092.680546

[30] P. G. Raponi, F. Petrini, R. Walkup, and F. Checconi, “Characterization
of the communication patterns of scientific applications on blue gene/p,”
in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, May 2011, pp. 1017–1024.

[31] C. Ma, Y. He, and N. Xiong, “Mpacp: An approach for automatic
matching of parallel application communication patterns,” in 2008 IEEE
Asia-Pacific Services Computing Conference, Dec 2008, pp. 1517–1522.

[32] P. C. Roth, J. S. Meredith, and J. S. Vetter, “Automated
characterization of parallel application communication patterns,”
in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’15.
New York, NY, USA: ACM, 2015, pp. 73–84. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749278

[33] D. J. Kerbyson and K. J. Barker, “Automatic identification of application
communication patterns via templates,” in ISCA PDCS, 2005.

