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Easy to Modify!

Easy to Run!

Easy to Build!

Explore Ideas!
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Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Success, but needs 
improvement
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Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Good Result!
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Explore using statistical 
comparison techniques on
• Computation
• Memory
• Communication behavior 

Extend our work
• Intel’s Top-Down Microarchitecture 

Analysis (TMA) 
• Dynamic profiling
• Roofline modeling
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QMCPack
Quantum Monte Carlo code

material science to understand the 
electronic structure of molecular and 

solid state systems 
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Quantum Monte Carlo code 
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computational kernels of its parent 
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Schrodinger wave equation 
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INTEL SKYLAKE 
PLATINUM 8160

24 CORES 

6 MEMORY CHANNELS 
PER SOCKET

SUPPORTS THE AVX512

TOTAL NODES 40 INTERCONNECT, INTEL 
OMNIPATH 
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Understand if key kernels and functions implementing these kernels are 

consistent across the two applications 

kernels Determinant update Computationally intensive kernel

Splines - SPO Memory intensive kernel

Jastrow factors Computationally intensive kernel

Distance tables Memory intensive kernel
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einspline_spo::MultiBspline::evaluate_vgh 
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Distance 
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Two Body 
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Events are derived for Likwid, with more
Average per-core 
Derived from events measured during the whole execution of  each 
application. 
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3 
 

one hardware generation to another. Hotspot can be a software 
module, function, loop, or a sequence of instructions across 
basic blocks. 

 
Figure 2: The Top-Down Analysis Hierarchy 

 
Top-Down breakdown is applied to the interesting hotspots 

where available pipeline slots are split into four basic 
categories: Retiring, Bad Speculation, Frontend Bound and 
Backend Bound. These terms are defined in the following sub-
sections. The best way to illustrate this methodology is 
through an example. Take a workload that is limited by the 
data cache performance. The method flags Backend Bound, 
and Frontend Bound will not be flagged. This means the user 
needs to drill down at the Backend Bound category as next 
step, leaving alone all Frontend related issues. When drilling 
down at the Backend, the Memory Bound category would be 
flagged as the application was assumed cache-sensitive. 
Similarly, the user can skip looking at non-memory related 
issues at this point. Next, a drill down inside Memory Bound 
is performed. L1, L2 and L3-Bound naturally break down the 
Memory Bound category. Each of them indicates the portion 
the workload is limited by that cache-level. L1 Bound should 
be flagged there. Lastly, Loads block due to overlap with 
earlier stores or cache line split loads might be specific 
performance issues underneath L1 Bound. The method would 
eventually recommend the user to focus on this area. 

Note that the hierarchical structure adds a natural safety 
net when looking at counter values. A value of an inner node 
should be disregarded unless nodes on the path from the root 
to that particular node are all flagged. For example, a simple 
code doing some divide operations on a memory-resident 
buffer may show high values for both Ext. Memory Bound 
and Divider nodes in Figure 2. Even though the Divider node 
itself may have high fraction value, it should be ignored 
assuming the workload is truly memory bound. This is assured 
as Backend.CoreBound will not be flagged. We refer to this as 
hierarchical-safety property. Note also that only weights of 
sibling nodes are comparable. This is due to the fact they are 
calculated at same pipeline stage. Comparing fractions of non-
sibling nodes is not recommended. 

 

 

3.2. Top Level breakdown 
There is a need for first-order classification of pipeline 

activity. Given the highly sophisticated microarchitecture, the 
first interesting question is how and where to do the first level 
breakdown? We choose the issue point, marked by the asterisk 
in Figure 1, as it is the natural border that splits the frontend 
and backend portions of machine.  It enables a highly accurate 
Top-Level classification. 

At issue point we classify each pipeline-slot into one of 
four base categories: Frontend Bound, Backend Bound, Bad 
Speculation and Retiring, as illustrated by Figure 3. If a uop is 
issued in a given cycle, it would eventually either get retired 
or cancelled. Thus it can be attributed to either Retiring or Bad 
Speculation respectively.  

 
Figure 3: Top Level breakdown flowchart 

Otherwise it can be split into whether there was a backend-
stall or not. A backend-stall is a backpressure mechanism the 
Backend asserts upon resource unavailability (e.g. lack of load 
buffer entries). In such a case we attribute the stall to the 
Backend, since even if the Frontend was ready with more uops 
it would not be able to pass them down the pipeline. If there 
was no backend-stall, it means the Frontend should have 
delivered some uops while the Backend was ready to accept 
them; hence we tag it with Frontend Bound. This backend-
stall condition is a key one as we outline in FetchBubbles 
definition in next section. 

In fact the classification is done at pipeline slots 
granularity as a superscalar CPU is capable of issuing multiple 
uops per cycle. This makes the breakdown very accurate and 
robust which is a necessity at the hierarchy’s top level. This 
accurate classification distinguishes our method from previous 
approaches in [1][5][6]. 

 

3.3. Frontend Bound category 
Recall that Frontend denotes the first portion of the 

pipeline where the branch predictor predicts the next address 
to fetch, cache lines are fetched, parsed into instructions, and 
decoded into micro-ops that can be executed later by the 
Backend. Frontend Bound denotes when the frontend of the 
CPU undersupplies the backend. That is, the latter would have 
been willing to accept uops. 

Dealing with Frontend issues is a bit tricky as they occur at 
the very beginning of the long and buffered pipeline. This 
means in many cases transient issues will not dominate the 
actual performance. Hence, it is rather important to dig into 
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Is miniQMC a Good Proxy for QMCPACK?  54

Depends on how the proxy will be used
miniQMC is a good proxy for QMCPACK for certain cases 
Does not faithfully model QMCPACK in every aspect 

Good in term of:
◦ Whole-application level 
◦ Hardware bottlenecks 
◦ Kernel-only execution profiles 
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Fig. 5. TMA backend bound

Characteristic Good Proxy? Characteristic Good Proxy? Characteristic Good Proxy?
MPI Comm Red Kernel Execution Profile Yellow Vectorization Yellow
Front-end Bound Green Branch/insn Red Insn Mix Red
Bad Speculation Green Branch miss/insn Yellow L1D/L2/L3 Cache MPKI Red
Back-end Bound Green Branch miss/branch Red L1L2All BW Red
Retiring Green L2L3Total& Evict BW Red L2L3Load BW Yellow
CPI Yellow CPU Yellow Roofline Green

TABLE VIII
SUMMARY OF MINIQMC/QMCPACK REPRESENTATIVENESS. GREEN INDICATES REPRESENTATIVE, YELLOW IS PARTIALLY REPRESENTATIVE, RED

DENOTES NOT REPRESENTATIVE. LEVEL THRESHOLDS ARE AN ORDER OF MAGNITUDE DIFFERENCE IN THE PARTICULAR CHARACTERISTIC FOR RED,
LESS THAN ORDER OF MAGNITUDE BUT STILL A DIFFERENCE WITHIN REASONABLE MEASUREMENT TOLERANCE FOR YELLOW, GREEN IS THE SAME.
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We summarize similarities and differences between miniQMC
and QMCPACK in Table VIII. All of the Top-Down Analysis
characteristics are green because the hardware bottlenecks
identified are the same in both applications. The kernel execu-
tion profile is labeled yellow because there is an approximate
3% difference in execution percentage in the the Two-Body
Jastrow kernel. Cache MPKI is red because there is an order of
magnitude difference between miniQMC and QMCPACK for
all cache levels. We realize the level thresholds are somewhat
subjectively defined and it probably depends on the individual

characteristic. However, the chart is a guide and we encourage
users to assess specific quantitative differences in individual
characteristics in making their use decision.

The methodology we follow is useful for identifying proxy
representativeness of its parent. We examine the applications
from both the software (kernels and kernel functions) and the
hardware perspective, which did provide useful information.
This methodology can and will be applied in the future to
study additional proxy/parent pairs.
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Future Work56

Examine alternative methods
Incorporate the work on the communication patterns by exploring pairs 
with communication implementation
Explore more parent/proxy pairs
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What's new?59

Dynamic profiling Roofline modeling

Qualitative 
comparison of 
quantitative metrics

Intel’s Top-Down 
Microarchitecture 
Analysis (TMA) 


