
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Proxy or Imposter? A Method and Case
Study to Determine the Answer

Omar Aaz iz (Sandia Nat iona l Labs)

Je an ine Cook (Sand i a Na t iona l Labs)

Cour t enay Vaughan (Sand i a Na t iona l Labs)

Dav id R i cha rds (Lawrence L ive r more Nat iona l Labora to r y)

Proxy Apps are Wonderful!2

Easy to Build!

Proxy Apps are Wonderful!3

Easy to Modify!
Easy to Build!

Proxy Apps are Wonderful!5

Easy to Modify!

Easy to Run!

Easy to Build!

Explore Ideas!

Do Proxies Match the Real Thing?6

Proxy

Parent

Proxy

Parent

Proxy

Parent

Dimensions: Resource Domains8

Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Dimensions: Resource Domains9

Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Not much proxy support, or
unavailable resources, so did

not do

Dimensions: Resource Domains10

Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Not much proxy support, or
unavailable resources, so did

not do

Dimensions: Resource Domains11

Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Success, but needs
improvement

Dimensions: Resource Domains12

Basic Node Host processors and memory

Communication Cluster interconnect

Accelerator GPU, et al.

Storage I/O Filesystem

Good Result!

Target: Dynamic Behavior13

Explore using statistical
comparison techniques on
• Computation
• Memory
• Communication behavior

Extend our work
• Intel’s Top-Down Microarchitecture

Analysis (TMA)
• Dynamic profiling
• Roofline modeling

Real and Proxy Applications19

QMCPack
Quantum Monte Carlo code

material science to understand the
electronic structure of molecular and

solid state systems

miniQMC
Quantum Monte Carlo code
comprises the important

computational kernels of its parent

Solve

Schrodinger wave equation

Real and Proxy Applications20

QMCPack
Quantum Monte Carlo code

material science to understand the
electronic structure of molecular and

solid state systems

miniQMC
Quantum Monte Carlo code
comprises the important

computational kernels of its parent

Solve

Schrodinger wave equation

Com
mu

nica
tion

Computational Platforms 21

INTEL SKYLAKE
PLATINUM 8160

24 CORES

6 MEMORY CHANNELS
PER SOCKET

SUPPORTS THE AVX512

TOTAL NODES 40 INTERCONNECT, INTEL
OMNIPATH

Methodology

Define
Resource
Domain

Dynamic
profiling

Roofline
modeling

Measurement
and comparison

Comparison of
microarchitecture

bottlenecks

Methodology

Define
Resource
Domain

Dynamic
profiling

Roofline
modeling

Measurement
and comparison

Comparison of
microarchitecture

bottlenecks

HPCToolkit

Dynamic profiling26

Understand if key kernels and functions implementing these kernels are

consistent across the two applications

kernels Determinant update Computationally intensive kernel

Splines - SPO Memory intensive kernel

Jastrow factors Computationally intensive kernel

Distance tables Memory intensive kernel

Kernel Percentages of Execution Time 27

Kernel miniQMC Time
% QMCPACK Time

%

Determinant

DiracDeterminant::acceptMove
DiracDeterminant::ratioGrad
MKL
DiracDeterminant::ratio

57.8
6.2
5.2
4.7

DiracDeterminantBase::acceptMove
DiracDeterminantBase::ratioGrad
DiracDeterminantBase::ratio
MKL DiracDeterminantBase::evaluateLog

49.3
7.7
2.3
10.0
2.3

Single-Particle
Orbital (SPO)

einspline_spo::MultiBspline::evaluate_vgh
einspline_spo::MultiBspline::evaluate_v
einspline_spo::MultiBspline::set

9.3
1.2
1.0

SPOSetBuilderFactory::createSPOSet 11.0

Distance

ParticleSet::makeMoveAndCheck
ParticleSet::setActive
DistanceTableAA::makeMoveOnSphere

4.8
4.8
3.2

ParticleSet::makeMoveOnSphere
ParticleSet::makeMoveAndCheck

11.2
1.0

Two Body
Jastrow

TwoBodyJastrowOrbital::BsplineFunctor::acceptMove 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio
OneBodyJastrowOrbital::BsplineFunctor::ratioGrad

4.0
0.5

Kernel Percentages of Execution Time 28

Kernel miniQMC Time
% QMCPACK Time

%

Determinant

DiracDeterminant::acceptMove
DiracDeterminant::ratioGrad
MKL
DiracDeterminant::ratio

57.8
6.2
5.2
4.7

DiracDeterminantBase::acceptMove
DiracDeterminantBase::ratioGrad
DiracDeterminantBase::ratio
MKL DiracDeterminantBase::evaluateLog

49.3
7.7
2.3
10.0
2.3

Single-Particle
Orbital (SPO)

einspline_spo::MultiBspline::evaluate_vgh
einspline_spo::MultiBspline::evaluate_v
einspline_spo::MultiBspline::set

9.3
1.2
1.0

SPOSetBuilderFactory::createSPOSet 11.0

Distance

ParticleSet::makeMoveAndCheck
ParticleSet::setActive
DistanceTableAA::makeMoveOnSphere

4.8
4.8
3.2

ParticleSet::makeMoveOnSphere
ParticleSet::makeMoveAndCheck

11.2
1.0

Two Body
Jastrow

TwoBodyJastrowOrbital::BsplineFunctor::acceptMove 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio
OneBodyJastrowOrbital::BsplineFunctor::ratioGrad

4.0
0.5

Kernel Percentages of Execution Time 29

Kernel miniQMC Time
% QMCPACK Time

%

Determinant

DiracDeterminant::acceptMove
DiracDeterminant::ratioGrad
MKL
DiracDeterminant::ratio

57.8
6.2
5.2
4.7

DiracDeterminantBase::acceptMove
DiracDeterminantBase::ratioGrad
DiracDeterminantBase::ratio
MKL DiracDeterminantBase::evaluateLog

49.3
7.7
2.3
10.0
2.3

Single-Particle
Orbital (SPO)

einspline_spo::MultiBspline::evaluate_vgh
einspline_spo::MultiBspline::evaluate_v
einspline_spo::MultiBspline::set

9.3
1.2
1.0

SPOSetBuilderFactory::createSPOSet 11.0

Distance

ParticleSet::makeMoveAndCheck
ParticleSet::setActive
DistanceTableAA::makeMoveOnSphere

4.8
4.8
3.2

ParticleSet::makeMoveOnSphere
ParticleSet::makeMoveAndCheck

11.2
1.0

Two Body
Jastrow

TwoBodyJastrowOrbital::BsplineFunctor::acceptMove 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio
OneBodyJastrowOrbital::BsplineFunctor::ratioGrad

4.0
0.5

Kernel Percentages of Execution Time 30

Kernel miniQMC Time
% QMCPACK Time

%

Determinant

DiracDeterminant::acceptMove
DiracDeterminant::ratioGrad
MKL
DiracDeterminant::ratio

57.8
6.2
5.2
4.7

DiracDeterminantBase::acceptMove
DiracDeterminantBase::ratioGrad
DiracDeterminantBase::ratio
MKL DiracDeterminantBase::evaluateLog

49.3
7.7
2.3
10.0
2.3

Single-Particle
Orbital (SPO)

einspline_spo::MultiBspline::evaluate_vgh
einspline_spo::MultiBspline::evaluate_v
einspline_spo::MultiBspline::set

9.3
1.2
1.0

SPOSetBuilderFactory::createSPOSet 11.0

Distance

ParticleSet::makeMoveAndCheck
ParticleSet::setActive
DistanceTableAA::makeMoveOnSphere

4.8
4.8
3.2

ParticleSet::makeMoveOnSphere
ParticleSet::makeMoveAndCheck

11.2
1.0

Two Body
Jastrow

TwoBodyJastrowOrbital::BsplineFunctor::acceptMove 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio
OneBodyJastrowOrbital::BsplineFunctor::ratioGrad

4.0
0.5

Kernel Percentages of Execution Time 31

Kernel miniQMC Time
% QMCPACK Time

%

Determinant

DiracDeterminant::acceptMove
DiracDeterminant::ratioGrad
MKL
DiracDeterminant::ratio

57.8
6.2
5.2
4.7

DiracDeterminantBase::acceptMove
DiracDeterminantBase::ratioGrad
DiracDeterminantBase::ratio
MKL DiracDeterminantBase::evaluateLog

49.3
7.7
2.3
10.0
2.3

Single-Particle
Orbital (SPO)

einspline_spo::MultiBspline::evaluate_vgh
einspline_spo::MultiBspline::evaluate_v
einspline_spo::MultiBspline::set

9.3
1.2
1.0

SPOSetBuilderFactory::createSPOSet 11.0

Distance

ParticleSet::makeMoveAndCheck
ParticleSet::setActive
DistanceTableAA::makeMoveOnSphere

4.8
4.8
3.2

ParticleSet::makeMoveOnSphere
ParticleSet::makeMoveAndCheck

11.2
1.0

Two Body
Jastrow

TwoBodyJastrowOrbital::BsplineFunctor::acceptMove 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio
OneBodyJastrowOrbital::BsplineFunctor::ratioGrad

4.0
0.5

Methodology

Define
Resource
Domain

Dynamic
profiling

Roofline
modeling

Measurement
and comparison

Comparison of
microarchitecture

bottlenecks

Intel Advisor

Roofline Model34

L1
 b

an
dwid

th
 33

5.
27

 G
B/s

ec

L2
 b

an
dwid

th
 15

8.
21

 G
B/s

ec

L3
 b

an
dwid

th
 24

.4
3 G

B/s
ec

DRAM
 b

an
dwid

th
 14

.4
8 G

B/s
ec

SP Vector FMA Peak 127.31 GFLOPS

SP Vector Add Peak 63.66 GFLOPS

DP Vector FMA Peak 63.65 GFLOPS

DP Vector Add Peak 31.81 GFLOPS

FLOP/Byte (Arithmetic Intensity)

Scalar Add Peak 5.58 GFLOPS

G
F

L
O

P
S

Loops in the MKL

BLAS library

Distance table

function

Two-body Jastrow orbital function

called evaluateLogandStore

Spline function in a solve loop

Spline function, part of the

SPO kernel

Cache/Memory Bound
Cache/Memory and/or

Computationally Bound
Computationally Bound Bound

L1 bandwidth 282.53 GB/se
c

L2 bandwidth 158.15 GB/se
c

L3 bandwidth 24.99 GB/se
c

DRAM bandwidth 12.49 GB/se
c

SP Vector FMA Peak 127.31 GFLOPS

SP Vector Add Peak 63.66 GFLOPS

DP Vector FMA Peak 63.65 GFLOPS

DP Vector Add Peak 31.81 GFLOPS

Scalar Add Peak 5.58 GFLOPS

G
F

LO
P

S Loops in the MKL
BLAS library

Spline function in a solve loop

Spline function, part of the
SPO kernel

FLOP/Byte (Arithmetic Intensity)
G

F
LO

P
S

Cache/Memory Bound
Cache/Memory and/or
Computationally Bound Computationally Bound Bound

Methodology

Define
Resource
Domain

Dynamic
profiling

Roofline
modeling

Measurement
and comparison

Comparison of
microarchitecture

bottlenecks

LDMS

Understand Behavior Similarity 40

Events are derived for Likwid, with more
Average per-core
Derived from events measured during the whole execution of each
application.

Understand Behavior Similarity 41

0

0.5

1

1.5

2

2.5

3

CPI CPU

CP
I (

cy
c

pe
r i

ns
n)

/C
PU

 (c
yc

 p
er

 u
op

)

Kernel Throughput

miniQMC - Determinant

QMCPACK - Determinant

miniQMC - Distance

QMCPACK - Distance

miniQMC - SPO

QMCPACK - SPO

miniQMC - Jastrow

QMCPACK - Jastrow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPI CPU

CP
I (

cy
c

pe
r i

ns
n)

/C
PU

 (c
yc

 p
er

 u
op

)

Whole Execution Throughput

miniQMC

QMCPACK

miniQMC
higher throughput

Understand Behavior Similarity 42

0

0.5

1

1.5

2

2.5

3

CPI CPU

CP
I (

cy
c

pe
r i

ns
n)

/C
PU

 (c
yc

 p
er

 u
op

)

Kernel Throughput

miniQMC - Determinant

QMCPACK - Determinant

miniQMC - Distance

QMCPACK - Distance

miniQMC - SPO

QMCPACK - SPO

miniQMC - Jastrow

QMCPACK - Jastrow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPI CPU

CP
I (

cy
c

pe
r i

ns
n)

/C
PU

 (c
yc

 p
er

 u
op

)

Whole Execution Throughput

miniQMC

QMCPACK

Jastrow kernel
&

SPO
no function similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Branch Rate Branch Mispredict Rate Branch Mispredict Ratio

Br
an

ch
 R

at
io

n
(e

.g
.,

br
an

ch
es

/in
sn

)

Kernel Branch Behavior

miniQMC - Determinant

QMCPACK - Determinant

miniQMC - Distance

QMCPACK - Distance

miniQMC - SPO

QMCPACK - SPO

miniQMC - Jastrow

QMCPACK - Jastrow

branches/insn

misses/insn

misses/branch

Branching Behavior Similarity 43

QMCPACK
Simulate many walkers

&
Have an inner loop that

iterates over them

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Branch Rate Branch Mispredict
Rate

Branch Mispredict
Ratio

Br
an

ch
 R

at
io

 (e
.g

.,
br

an
ch

es
/in

sn
)

Whole Execution Branch Behavior

miniQMC

QMCPACK

branches/insn

misses/insn
misses/branch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Branch Rate Branch Mispredict Rate Branch Mispredict Ratio

Br
an

ch
 R

at
io

n
(e

.g
.,

br
an

ch
es

/in
sn

)

Kernel Branch Behavior

miniQMC - Determinant

QMCPACK - Determinant

miniQMC - Distance

QMCPACK - Distance

miniQMC - SPO

QMCPACK - SPO

miniQMC - Jastrow

QMCPACK - Jastrow

branches/insn

misses/insn

misses/branch

Branching Behavior Similarity 44

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Branch Rate Branch Mispredict
Rate

Branch Mispredict
Ratio

Br
an

ch
 R

at
io

 (e
.g

.,
br

an
ch

es
/in

sn
)

Whole Execution Branch Behavior

miniQMC

QMCPACK

branches/insn

misses/insn
misses/branch

Jastrow kernel
&

SPO

0

5

10

15

20

25

30

L1L2 Total L1L2 Load L1L2 Evict L2L3 Total L2L3 Load L2L3 Evict

GB
/s

ec

Cache Level and Data Type

Cache Bandwidths (GB/sec)

miniQMC - Determinant

QMCPACK - Determinant

miniQMC - Distance

QMCPACK - Distance

miniQMC - SPO

QMCPACK - SPO

miniQMC - Jastrow

QMCPACK - Jastrow

Cache Behavior Similarity 45

Methodology

Define
Resource
Domain

Dynamic
profiling

Roofline
modeling

Measurement
and comparison

Comparison of
microarchitecture

bottlenecks

LDMS

Hardware-Level Bottlenecks using TMA 47

3

one hardware generation to another. Hotspot can be a software
module, function, loop, or a sequence of instructions across
basic blocks.

Figure 2: The Top-Down Analysis Hierarchy

Top-Down breakdown is applied to the interesting hotspots

where available pipeline slots are split into four basic
categories: Retiring, Bad Speculation, Frontend Bound and
Backend Bound. These terms are defined in the following sub-
sections. The best way to illustrate this methodology is
through an example. Take a workload that is limited by the
data cache performance. The method flags Backend Bound,
and Frontend Bound will not be flagged. This means the user
needs to drill down at the Backend Bound category as next
step, leaving alone all Frontend related issues. When drilling
down at the Backend, the Memory Bound category would be
flagged as the application was assumed cache-sensitive.
Similarly, the user can skip looking at non-memory related
issues at this point. Next, a drill down inside Memory Bound
is performed. L1, L2 and L3-Bound naturally break down the
Memory Bound category. Each of them indicates the portion
the workload is limited by that cache-level. L1 Bound should
be flagged there. Lastly, Loads block due to overlap with
earlier stores or cache line split loads might be specific
performance issues underneath L1 Bound. The method would
eventually recommend the user to focus on this area.

Note that the hierarchical structure adds a natural safety
net when looking at counter values. A value of an inner node
should be disregarded unless nodes on the path from the root
to that particular node are all flagged. For example, a simple
code doing some divide operations on a memory-resident
buffer may show high values for both Ext. Memory Bound
and Divider nodes in Figure 2. Even though the Divider node
itself may have high fraction value, it should be ignored
assuming the workload is truly memory bound. This is assured
as Backend.CoreBound will not be flagged. We refer to this as
hierarchical-safety property. Note also that only weights of
sibling nodes are comparable. This is due to the fact they are
calculated at same pipeline stage. Comparing fractions of non-
sibling nodes is not recommended.

3.2. Top Level breakdown
There is a need for first-order classification of pipeline

activity. Given the highly sophisticated microarchitecture, the
first interesting question is how and where to do the first level
breakdown? We choose the issue point, marked by the asterisk
in Figure 1, as it is the natural border that splits the frontend
and backend portions of machine. It enables a highly accurate
Top-Level classification.

At issue point we classify each pipeline-slot into one of
four base categories: Frontend Bound, Backend Bound, Bad
Speculation and Retiring, as illustrated by Figure 3. If a uop is
issued in a given cycle, it would eventually either get retired
or cancelled. Thus it can be attributed to either Retiring or Bad
Speculation respectively.

Figure 3: Top Level breakdown flowchart

Otherwise it can be split into whether there was a backend-
stall or not. A backend-stall is a backpressure mechanism the
Backend asserts upon resource unavailability (e.g. lack of load
buffer entries). In such a case we attribute the stall to the
Backend, since even if the Frontend was ready with more uops
it would not be able to pass them down the pipeline. If there
was no backend-stall, it means the Frontend should have
delivered some uops while the Backend was ready to accept
them; hence we tag it with Frontend Bound. This backend-
stall condition is a key one as we outline in FetchBubbles
definition in next section.

In fact the classification is done at pipeline slots
granularity as a superscalar CPU is capable of issuing multiple
uops per cycle. This makes the breakdown very accurate and
robust which is a necessity at the hierarchy’s top level. This
accurate classification distinguishes our method from previous
approaches in [1][5][6].

3.3. Frontend Bound category
Recall that Frontend denotes the first portion of the

pipeline where the branch predictor predicts the next address
to fetch, cache lines are fetched, parsed into instructions, and
decoded into micro-ops that can be executed later by the
Backend. Frontend Bound denotes when the frontend of the
CPU undersupplies the backend. That is, the latter would have
been willing to accept uops.

Dealing with Frontend issues is a bit tricky as they occur at
the very beginning of the long and buffered pipeline. This
means in many cases transient issues will not dominate the
actual performance. Hence, it is rather important to dig into

TMA Level 148

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Front-End
Bound

 Bad
Speculation

 Backend Bound Retir ing

Bo
un

de
dn

es
s

Ra
tio

Top-Down Analysis, Level 1

miniQMC

QMCPACK

Yellow dashes are
bottleneck thresholds

miniQMC & QMCPACK
Backend Bound

Due to micro-ops are
not being delivered to

the issue pipe

TMA Level 2 – Backend Bound49

miniQMC & QMCPACK
Memory Bound

Slightly Core Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Memory Bound Core Bound

Bo
un

de
dn

es
s

Ra
tio

Backend Bound, Level 2

miniQMC

QMCPACK

0

0.05

0.1

0.15

0.2

0.25

0.3

 L1 bound L2 bound L3 bound DRAM
bound

 Store bound

Bo
un

de
dn

es
s

Ra
tio

Backend Bound Level 3: Memory Bound

miniQMC

QMCPACK

TMA Level 3 – Memory Bound50

miniQMC & QMCPACK
DRAM Bound

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Memory Bandwidth Memory Latency

Bo
un

de
dn

es
s

Ra
tio

Backend Bound Level 4: DRAM Bound

miniQMC

QMCPACK

TMA Level 4 – DRAM Bound51

miniQMC & QMCPACK
Bandwidth!

0

0.05

0.1

0.15

0.2

0.25

0.3

Divider Ports Utilization

Bo
un

de
dn

es
s

Ra
tio

Core Bound Level 3

miniQMC

QMCPACK

TMA Level 3 – Core Bound52

miniQMC & QMCPACK
Port Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 Ports Uti lized 1 Port Utilized 2 Ports Uti lized 3 Ports Uti lized

Core Bound Level 4 Ports Utilization

miniQMC

QMCPACK

TMA Level 4 – Port Utilization53

miniQMC & QMCPACK
TMA couldn’t capture

the problem L

Is miniQMC a Good Proxy for QMCPACK? 54

Depends on how the proxy will be used
miniQMC is a good proxy for QMCPACK for certain cases
Does not faithfully model QMCPACK in every aspect

Good in term of:
◦ Whole-application level
◦ Hardware bottlenecks
◦ Kernel-only execution profiles

Is miniQMC a Good Proxy for QMCPACK? 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Front-End
Bound

 Bad
Speculation

 Backend Bound Retir ing

Bo
un

de
dn

es
s

Ra
tio

Top-Down Analysis, Level 1

miniQMC

QMCPACK

Yellow dashes are
bottleneck thresholds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Memory Bound Core Bound

Bo
un

de
dn

es
s

Ra
tio

Backend Bound, Level 2

miniQMC

QMCPACK

0

0.05

0.1

0.15

0.2

0.25

0.3

 L1 bound L2 bound L3 bound DRAM
bound

 Store bound

Bo
un

de
dn

es
s

Ra
tio

Backend Bound Level 3: Memory Bound

miniQMC

QMCPACK

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 Memory Bandwidth Memory Latency

Bo
un

de
dn

es
s

Ra
tio

Backend Bound Level 4: DRAM Bound

miniQMC

QMCPACK

Fig. 5. TMA backend bound

Characteristic Good Proxy? Characteristic Good Proxy? Characteristic Good Proxy?
MPI Comm Red Kernel Execution Profile Yellow Vectorization Yellow
Front-end Bound Green Branch/insn Red Insn Mix Red
Bad Speculation Green Branch miss/insn Yellow L1D/L2/L3 Cache MPKI Red
Back-end Bound Green Branch miss/branch Red L1L2All BW Red
Retiring Green L2L3Total& Evict BW Red L2L3Load BW Yellow
CPI Yellow CPU Yellow Roofline Green

TABLE VIII
SUMMARY OF MINIQMC/QMCPACK REPRESENTATIVENESS. GREEN INDICATES REPRESENTATIVE, YELLOW IS PARTIALLY REPRESENTATIVE, RED

DENOTES NOT REPRESENTATIVE. LEVEL THRESHOLDS ARE AN ORDER OF MAGNITUDE DIFFERENCE IN THE PARTICULAR CHARACTERISTIC FOR RED,
LESS THAN ORDER OF MAGNITUDE BUT STILL A DIFFERENCE WITHIN REASONABLE MEASUREMENT TOLERANCE FOR YELLOW, GREEN IS THE SAME.

0

0.05

0.1

0.15

0.2

0.25

0.3

Divider Ports Utilization

Bo
un

de
dn

es
s

Ra
tio

Core Bound Level 3

miniQMC

QMCPACK

Fig. 6. TMA core bound

We summarize similarities and differences between miniQMC
and QMCPACK in Table VIII. All of the Top-Down Analysis
characteristics are green because the hardware bottlenecks
identified are the same in both applications. The kernel execu-
tion profile is labeled yellow because there is an approximate
3% difference in execution percentage in the the Two-Body
Jastrow kernel. Cache MPKI is red because there is an order of
magnitude difference between miniQMC and QMCPACK for
all cache levels. We realize the level thresholds are somewhat
subjectively defined and it probably depends on the individual

characteristic. However, the chart is a guide and we encourage
users to assess specific quantitative differences in individual
characteristics in making their use decision.

The methodology we follow is useful for identifying proxy
representativeness of its parent. We examine the applications
from both the software (kernels and kernel functions) and the
hardware perspective, which did provide useful information.
This methodology can and will be applied in the future to
study additional proxy/parent pairs.

V. ACKNOWLEDGEMENT

This research was supported by the Exascale Computing
Project (ECP), Project Number 17-SC-20-SC, a collaborative
effort of two DOE organizations, the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem
including software, applications, hardware, advanced system
engineering, and early testbed platforms, to support the na-
tion’s exascale computing imperative. Sandia National Lab-
oratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE- NA0003525.

REPRESENTATIVE

PARTIALLY REPRESENTATIVE

NOT REPRESENTATIVE

Future Work56

Examine alternative methods
Incorporate the work on the communication patterns by exploring pairs
with communication implementation
Explore more parent/proxy pairs

Acknowledgment57

This research was supported by the Exascale Computing Project
(ECP), Project Number 17-SC-20-SC, a collaborative effort of two
DOE organizations, the Office of Science and the National Nuclear
Security Administration, responsible for the planning and preparation of
a capable exascale ecosystem including software, applications, hardware,
advanced system engineering, and early testbed platforms, to support the
nation’s exascale computing imperative.
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc.,
for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE- NA0003525.

Questions ?

What's new?59

Dynamic profiling Roofline modeling

Qualitative
comparison of
quantitative metrics

Intel’s Top-Down
Microarchitecture
Analysis (TMA)

