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ECP Proxy App Project: Objectives and Scope

• Assemble and curate a proxy app suite that 
represents the most important features (especially 
performance) of exascale applications.

• Improve the quality of proxies created by ECP and 
maximize the benefit received from their use. 
– Set standards for documentation, build and test systems, 

performance models, etc.

• Assess the representativeness of proxies

• Project team members at LLNL, LANL, SNL, LBNL, 
ORNL, ANL
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Over 50 proxy apps can be installed using Spack

• Builds multiple versions, configurations, and compilers

• Encourages “standard” build recipes that conform to 
common build systems (e.g. Autotools, CMake, Makefile)

• Ease of aggregation
• spack fetch <package_name> to just download the vanilla source
• spack install --source <package_name> to just download the possibly 

patched source

• Proxies can be build as a whole or separately the “Spack” 
way
– Different compilers and with or without system libraries

• Currently using Spack for continuous integration

Spack
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We maintain a catalog of over 50 proxy apps

• Work underway on 
collecting/distributing 
multiple versions of proxies
– Issues with maintainability, 

consistency, releasability, etc.

• Contributions are welcome.
– Submit your proxy information 

through the proxy app 
website

https://proxyapps.exascaleproject.org

https://proxyapps.exascaleproject.org/
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We released version 2.0 of the ECP Proxy App Suite in Oct 2018
Proxy Language GPU Proxy Language GPU

AMG C No public version miniVite C++

CANDLE 
Benchmarks

Python NEKbone Fortran
OpenACC, 
OpenACC+CUDA

Ember MPI/SHMEM N/A PICSARlite Fortran

ExaMiniMD C++ Kokkos SW4lite C, C++, 
Fortran

CUDA, RAJA

Laghos C++ CUDA, RAJA, 
OCCA

SWFFT C

MACSio C N/A thornado-mini Fortran

miniAMR C No public version XSBench C OpenACC, 
OpenCL, AMP

miniQMC C++ Kokkos OpenMP
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Graph Clustering (community detection)

• Problem: Given G(V,E,w), identify tightly knit groups of 
vertices that strongly correlate to one another within their 
group, and sparsely so, outside. 

Input :
Ø V = {1,2,… n }   
Ø E: a set of M edges 
Ø w(e): weight of edge e

(non-negative)
Ø m = S"eÎE w(e)

Output :
Ø A partitioning of V into 

k mutually disjoint clusters 
P = {C1, C2,… Ck}   
such that: … ?



miniVite (/’vi:te/)
• Implements a single phase of Louvain 

method (without rebuilding the graph)
• Capable of generating synthetic Random 

Geometric Graphs (RGG) in parallel (needs 
random numbers)
– Can also add random edges across processes

• Can also use real world graphs as input 
(have to convert to a binary format first)

• Parts of code has multiple communication 
options (can be selected at compile time) –
Sendrecv, NB Isend/Irecv (default), MPI 
RMA and Collectives

• About 3K LoC 

miniVite

Parallel 
RGG 

generator

MPI I/O 
binary file 

reader

Parallel LCG 
(random 
numbers)

C++11

Single 
Phase 

Louvain

MPI
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Graph clustering OR
Community detection

• Communities: Nodes/vertices of most real-world network/graphs tend to be organized into tightly-
knit modules known as communities or clusters

• In 2008, Blondel, et al. introduced a multi-phase, iterative heuristic for modularity optimization, 
called the Louvain method

• Goodness of partitioning into communities is typically measured using a global metric called 
modularity
– Depends on sum of edge weights between vertices within a community (e_ij), and sum of weights 

incident upon a community (a_c)

9



Louvain algorithm
• Initially each vertex assigned to 

a separate community
• Within each iteration

– Compute delta Q when a 
vertex migrates

– Move vertex from current 
community to one that yields 
max delta Q

• Phase continues until delta Q 
between successive iterations 
is below a threshold

• At the end of each phase, 
graph is rebuilt

Rebuilding is nontrivial,
may takes ~1-10% of the 
overall phase time 
depending on input 
graph and volume
of vertex movement

10

Simple vertex-based data distribution

ghosts/cross edges



Parallel Random Geometric Graph (RGG) generator
• Constructed by randomly placing N nodes 

within a unit square – only add an edge 
between two vertices if their distance is 
within a range d
– Basically, generate random numbers within (0,1) 

and compute euclidean distance between two 
points, if it is less than d, add an edge

– RGG is known to demonstrate community 
structure (high modularity)

• We distribute equal number of vertices 
across processes, each process may have 
(cross) edges with its up or down neighbor 

• Option to add random number of (cross) 
edges across processes that are far apart

1/p{0,0}
Y

X

{1/p,1}{0,1/p}

{0,2/p}

{0,3/p}

{2/p, 1}
{3/p, 1}

{4/p, 1}
1/p > d

p=
1,

 d
eg

=6
, m

od
=0

.7
61

p=
8,

 d
eg

=6
, m

od
=0

.7
84

p=
2,

 d
eg

=6
, m

od
=0

.7
49

p=
4,

 d
eg

=6
, m

od
=0

.7
54

p = 8

p = 1 p = 2

p = 4

11



Results

For a number of real world graphs, first phase of Louvain method
does the most work (little difference between first and final phase)

RGG of 134.2M vertices and 1.6B edges on NERSC Cori

Processes NB Send/Recv Collectives Sendrecv RMA
512 7.48492 7.35221 11.2029 7.39827
1024 6.52832 5.56177 13.2942 5.93101
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Performance analysis (I)

1. HPCToolkit profiling shows over 60% of time spent in managing and communicating 
vertex-community information

2.   About 40% is spent on global communication (MPI_Allreduce) for computing modularity

13
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https://qmcpack.org

Developed and released via 
github.com/QMCPACK/qmcpack

Pull request reviews, continuous 
integration & integration testing. 

UIUC/NCSA open source license. 

~330K code lines, <100K “core” 

C++11 (14 soon), MPI, HDF5, XML, FFTW.

OpenMP (walker level only) and CUDA 
(old) on node. Different vectorization / 
parallelization scheme for GPU & CPU. 
Major development + maintenance 
headache.

Miniapps: miniqmc, miniafqmc under 
github.com/QMCPACK . Use for 
prototyping, experimenting with individual 
kernels etc. 

1 © 2018 IOP Publishing Ltd Printed in the UK
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High-level Algorithms

CPU Algorithm
do time step i [ 1K-100K per MPI task ]

do walker j  [ 1 per core, OpenMP ]
do electron k [ 0.1-10K ]

do component l  [ 3-4 ]
advance WF

end l
end k
evaluate Hamiltonian

end j
spawn/kill walkers, load balance

end i

Today, GPU operates on walkers (Markov chains) in a “batch” to reduce kernel launch overhead, 
particularly for small problems (N<few 100). CUDA kernels operate on multiple walkers at once.

Drawbacks: Multiple drivers, Extra APIs through entire app, Code divergence, Memory bandwidth still 
stressed... 

GPU Algorithm: 1 MPI task/GPU
do time step i

do electron k (lock step)
do component l

advance WF of all the walkers [10-1000]
end l

end k
evaluate Hamiltonian of all the walkers
spawn/kill walkers, load balance 

end i
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miniQMC

• miniQMC is a mini-app for QMCPack, which is a Quantum Monte Carlo 
code
– The goal of QMCPack is to provide highly accurate calculations of the properties of 

complex materials

• Computational motifs include: particle methods, dense and sparse linear 
algebra, and Monte Carlo

• The version we are using is based on version 3.1.0 of QMCPack



17

miniQMC computation

• QMCPack utilizes an ensemble of walkers which represent particle positions and 
are moved through space by a drift-diffusion process

• The miniQMC calculation utilizes one walker per rank with a predefined problem 
to focus on single node performance

• The size of the problem space for the walker in miniQMC can scaled at runtime 
by replicating the space by tiling

• There is no MPI communication in miniQMC since the mini-app is focused on the 
computational portion of the app
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Significant kernels

• Update – Sherman-Morrison rank-1 NxN matrix inverse update
Strongly memory bandwidth limited. Source of N3 scaling.

• Spline – 3D spline value & gradients 4x4x4xN stencil, membw limited 

• Jastrow functions – Small classical MD force-field like polynomial 
evaluations using distances+cutoffs from electron 
positions. One and two-body forms most common.

• Distance tables – Interparticle distances with minimum image 
convention/periodic boundary conditions applied.

• Others, depending on threadability of above.



LIGO

ExaStar
nuclear

astrophysics
simulation

• ExaStar simulations are essential to:
• Guide future nuclear physics 

experimental programs
• siting the r-process directly impacts 

which rates are most important to 
measure

• Provide reliable templates for 
gravitational wave and neutrino 
detectors
• Low signal-to-noise requires 

templates for matching
• Interpret X-ray and gamma-ray 

observations 
• ExaStar simulations will incorporate:

• experimental nuclear physics data 

• satellite observations of astrophysical 
phenomena

• GW detections

• neutrino experimental data, including solar 
and reactor experiments

to improve predictive power



radiation
Equation of State Module

local, tabulated

microphysics

gravity

dynamics
reactions

block-
structured 
adaptive 

mesh
refinement

Two-moment Transport
Semi-implicit Discontinuous 

Galerkin methods

Opacity Module
tabulated, scattering kernels 

Boltzmann Transport
Implicit Monte Carlo methods

Nuclear Reaction Networks
sparse stiff linear systems

Compressible Hydrodynamics
Finite Volume Godunov methods Lagrangian tracer Particles

for post-processing

Approximate relativity
Conformally flat approx.

Elliptic eq w/ multigrid methods

magnetohydrodynamics

Full general relativity
DG methods for Einstein Eq.

ExaStar
multiphysics

radiation transport
will be >90% of all
FLOPs in 
challenge problem
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thornado-mini represents neutrino radiation transport
(80-90% of FLOPS in ExaStar challenge problem)

• Key computational motifs are structured mesh, 
dense linear algebra

• The problem size is defined by the number of elements 
used, the number of energy groups, and the resolution 
of the interaction table used.
– The problem solved in the mini-app (Deleptonization) uses 

production values for elements and energy groups 
(2 and 20, respectively), but the table is about quarter-resolution in the three dimensions.

• The mini-app is, in fact, the development vehicle for the finite-element transport 
algorithms, the mini-app is slowly updated with new implementations. GPU-
enabled version (1.1) will be available in March, 2019.
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WarpX: Exascale Modeling of 
Advanced Particle Accelerators

WarpX has code connecting the 3 components
lWarp: original Python code (no longer needed!)
lAMReX: data and communication
l PICSAR: kernels, also a self-contained mini-app
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The Particle-In-Cell (PIC) method

Different regimes:
l Particle-dominated, >>1 particle/cell
l Commensurate, ~1 particle/cell
l Field-dominated, <<1 particle/cell
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Time breakdown on 1 KNL node,
50 particles/cell

Report is on Confluence: ADSE06-WarpX_Milestone_report_FY18.2.pdf
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Roofline model on 1 KNL node,
32 particles/cell

PICSAR kernels mostly memory-bound.
Shown here:
Charge Deposition, Field Gather, Particle Push.
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PICSARlite was created to simplify looking a PIC challenges

• Reduced loc from over 80,000 to under 10,000
– Most steps have multiple options or algorithms.  Simplified to only one.
– Led to script that will automatically reduce PICSAR to a smaller code base containing only the 

selected methods

• WarpX team is interested in reducing communication:
– merging messages
– overlapping communication with computation

l WarpX team has a mini version of WarpX (using only simplest version of each 
PIC kernel) implemented on SummitDev.
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Modeling Communication Patterns for Exascale

• Exascale systems are likely to be some of the largest HPC machines ever built
– Implies larger scale and higher performance demands for network interconnects
– Additional opportunities to add hardware support for some communication operations to 

reduce latency, improve operation throughput and increase performance

• What we (HPC community, vendors etc) need are:
– Good models of primitive communication patterns that HPC codes routinely execute (so we 

can analyze the impact of hardware changes on full system performance)
– Methods to easily scale communication models so we can evaluate broad range of Exascale

system options (traces lock us in to specific rank counts and configurations)
– Flexible parameterization of communication patterns to reflect choices in decomposition that 

could be important (e.g. when using a GPU versus a CPU versus a …)
– Note: we cannot represent every communication pattern in every application, we need to 

capture a small subset from which important characteristics of network performance can be 
modeled in order to support tractable analysis of future systems
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Ember Communication Patterns

• Ember is a suite of communication patterns that have been 
developed since 2012 in collaboration with leading industry 
vendors (Cray, IBM, Intel, HPE, ..)
– Designed originally to work in the SST Simulator as a scalable model 

of DOE workloads (https://github.com/sstsimulator)

– Highly parameterizable to easily replicate behavior across range of 
DOE code bases

– Flexible enough to scale from small node counts to over a million 
simulated MPI ranks (much easier to use than communication 
traces)

– Can encode complex, dynamic behavior which traces cannot capture

– Generic enough to work in any simulation environment

• For ECP Proxy Applications several communication patterns 
have been turned into simple, equivalent MPI/SHMEM drivers 
to run on HPC systems

Ember

Hades/Hermes

Fire Fly

Merlin

(App Model)

(MPI)

(NIC)

(Net.)

http://github.com/sstsimulator/ember
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Using Ember Communication Patterns

• How can I use Ember Communication Patterns?
– Two main choices: (1) Run the MPI/SHMEM implementations, (2) Run the patterns on one of 

DOE’s simulation environments (e.g. SST, CODES..)

• What is the SST Simulator?

– Parallel, Conservative, Discrete-Event Hardware Simulation Environment

– Can simulate cycle-accurate models of single compute nodes through to full-scale models of 

system interconnects

– Validated against DOE machine installations

– Used by industry vendors (Cray, Intel, IBM, HPE, etc)

– Email: wg-sst@sandia.gov for more information

– Go to: https://sst-simulator.org

mailto:wg-sst@sandia.gov
https://sst-simulator.org/
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Example Uses of Ember
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Simulator/Performance Model 
Validation 

Projection of Communication Patterns
For Future Exascale Machine Configurations
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Communication Patterns included in Ember

• Nearest neighbor (Structured, halo communication)

• Nearest neighbor (Unstructured, halo-like communication, varying message 
sizes)

• Wavefront sweeps

• MPI Collective operations (reduction, all-gather, scatter, etc)

• Random, fine-grained messaging (closer to large-scale graph analysis)

• FFTs (all-to-all messages)

• Network in-casts (many to few communication flows, also represent I/O 
transfers)
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Assessment Activities

• Goal
– Performance characterization and identification of underlying hardware bottlenecks that 

negatively impact performance of both proxy and parent application
• On current generation platforms
• Using Exascale challenge problems where possible, otherwise a challenge problem on current 

systems
– Determine quantitatively if the proxy represents the parent as intended (e.g., memory, 

communication, computation)
– Target 8 new proxy/parent pairs per year
– Looking at both CPU and GPU-based performance
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Standard Performance Characterization

• Dynamic profiling to determine hot functions

• Roofline model to understand upper bound
– Cache and memory bandwidths
– FLOPS/arithmetic intensity

• For both proxy and parent and for whole execution and for each of top 10 
functions (10 functions that account for largest percentage of total execution 
time)
– Cache and memory bandwidths
– FLOPS/arithmetic intensity
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Baseline using Roofline Model

• miniQMC

1/11/2019 Intel Advisor - /ascldap/users/oaaziz/roofline/vec_project/miniqmc_1000600

file:///Users/oaaziz/D/collected_data/roofline/report_miniqmc.html 1/1
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Profugus roof line from Brian
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Profugus Dynamic Profile from Brian
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Identifying Hardware Bottlenecks

• Drill-down on memory bounded-ness
– Implemented Intel’s Top-Down Microarchitecture Analysis (TMA) into LDMS

• Fast, flexible, and get per-process data
– Currently validating TMA methodology

• Does it really identify bottlenecks correctly?
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QMCPack, NiO256 atoms on Skylake
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Function Drill-Down: Dynamic Profiles
• MiniQMC

evaluated_vgh
25%

set
17%

moveOnSphere
13%

evaluate_
v…

ratio
5%

other
27%

MINIQMC - 1 X 8 X 1 

evalutate
20%

evalutate_vgh
14%

move
12%moveOnSphere

12%

evaluate_v
7%

other
35%

MINIQMC - 1 X 1 X 32

Instrumented these functions, currently collecting TMA and other hardware performance counters to
better understand composite behavior.
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GPU Characterization

• Motivation
– Large proportion of performance on exascale computers expected to come from accelerators 

such as GPUs.
– Tradeoffs between performance and portability depending on GPU program model used.
– Application may have different characteristics and bottlenecks on GPU vs. CPU architectures.

• Goal is to use proxy apps to answer the following questions:
– What are the implications of GPU architecture trends for ECP applications?
– What GPU programming models will enable the best performance portability across future 

accelerator architectures?
– What software optimizations are key to achieving good performance on GPU architectures?
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Interaction with ECP AD Teams

Best practices for proxy app development for GPUs (Proxy App team can help as 

resources allow)

– Provide proxy app configurations and inputs representative of exascale application problems 

(can be scaled back to reduce runtime and number of nodes)

– Keep proxy app up-to-date with main app development

• In some cases (e.g., SW4lite, ProfugusMC), proxy app leads GPU development

– Provide feedback on Proxy App team assessment results (maybe we missed something)

– Optimize proxy app GPU implementation for new GPU architectures and features 

• Most time-consuming kernels are the most important.
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Why GPU Assessment Matters

• Ask yourselves
– If a vendor uses my proxy app to help with design decisions for GPU architecture features, 

will the result benefit performance of my application?
– If my proxy app is used for procurement decisions for a machine with accelerators, will the 

resulting machine architecture and configuration match my application requirements?

• If you don’t have a representative GPU implementation that is agile enough to be 
easily built and run (including on simulators and prototypes), your application will 
not influence these decisions!
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GPU Assessment Procedure

• Similar to CPU assessment that has already started
• Steps

– Obtain code and inputs for CPU and GPU versions
– Build and run CPU and GPU versions and verify results
– Profile execution
– Collect characterization data

• Instruction mix
• Achieved cache and memory bandwidths
• Communication characteristics

– Analysis
• Compare full and proxy app characteristics
• Roofline models
• Identify performance  and scaling bottlenecks



44

SW4lite Performance on P100 vs. V100

LOH.1-h100.in input running
on one GPU
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SW4lite Results on Summit

Test case Ngp Nts Nodes GPUs Runtime (sec)
LOH.1-h100 1.55e7 1073 1 1 19.4
LOH.1-h100 1.55e7 1073 1 6 5.16
LOH.1-h50 1.23e8 1073 1 3 55.4
LOH.1-h50 1.23e8 1073 1 6 31.8
LOH.1-h50 1.23e8 1073 2 8 25.4
LOH.1-h25 9.82e8 1073 2 12 115
LOH.1-h25 9.82e8 1073 4 24 69.7

Remarks:
• Reasonable strong scaling
• Weak scaling is not good (much worse that SW4 on Cori 2 KNL, where runtime increased 6% 

going from h100 to h50 and increased 30% going from h50 to h25)



46

Clustering Analysis of Proxy Representativenes

Define
Resource
Domain

Identify
Collectible

Metrics

Principal
Component

Analysis
Hierarchical
Clustering

Specific
Data

Analyses

Collect
Data

Long Data Vectors

IEEE Cluster 2018, ““A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”
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Broadwell Basic Node Hardware Metric Clustering
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Broadwell Communication Clustering
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Proxy/Parent Communication Similarity

• Communication metrics based on behavior (not MPI primitives used)
– Pairwise communication data analysis

• Point to point communication patterns (source, destination)
• Total number of messages sent for each pair
• Using CrayPat tool

– Communication vector data clustering 
• KB/sec - Total size of data transferred (KB) / total execution time (sec)
• MPI KB/sec - Total size of data transferred (KB) / total time spent in MPI (sec) 
• Message size histogram data
• Using mpiP tool

PMBS2018, “Exploring and Quantifying How Communication Behaviors in Proxies 
Relate to Real Applications”



Results

Parent/Proxy 
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

SW4/
SW4lite 

100 100 100 100 1 1 1 1 1 1

SW4     SW4Lite
50

33463347



LAMMPS     ExaMiniMD
Results

Parent/Proxy 
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

LAMMPS/
ExaMMD

100 100 100 100 0 0 0 0 0 0
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207027208

14414 20703



Results

Parent/Proxy 
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

HACC/
SWFFT 

51.7 29.4 71.4 71.4 0.58 0.31 0.61 0.28 0.87 0.81
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HACC     SWFFT

200178

1210 500



Nek5K 3D     Nekbone
Results

Parent/Proxy 
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

Nek5K 3D/
Nekbone 3D 

99.9 51.4 58.0 68.4 -0.1 -0.05 -0.65 -0.23 0.04 0.49
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65124

35046 15342
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Questions???



exascaleproject.org

Thank you!


