
exascaleproject.org

What’s New in Proxy Apps

ECP Annual Meeting 2019

David Richards
LLNL

Houston, TX
15 January 2019

2

ECP Proxy App Project: Objectives and Scope

• Assemble and curate a proxy app suite that
represents the most important features (especially
performance) of exascale applications.

• Improve the quality of proxies created by ECP and
maximize the benefit received from their use.
– Set standards for documentation, build and test systems,

performance models, etc.

• Assess the representativeness of proxies

• Project team members at LLNL, LANL, SNL, LBNL,
ORNL, ANL

3

Over 50 proxy apps can be installed using Spack

• Builds multiple versions, configurations, and compilers

• Encourages “standard” build recipes that conform to
common build systems (e.g. Autotools, CMake, Makefile)

• Ease of aggregation
• spack fetch <package_name> to just download the vanilla source
• spack install --source <package_name> to just download the possibly

patched source

• Proxies can be build as a whole or separately the “Spack”
way
– Different compilers and with or without system libraries

• Currently using Spack for continuous integration

Spack

4

We maintain a catalog of over 50 proxy apps

• Work underway on
collecting/distributing
multiple versions of proxies
– Issues with maintainability,

consistency, releasability, etc.

• Contributions are welcome.
– Submit your proxy information

through the proxy app
website

https://proxyapps.exascaleproject.org

https://proxyapps.exascaleproject.org/

5

We released version 2.0 of the ECP Proxy App Suite in Oct 2018
Proxy Language GPU Proxy Language GPU

AMG C No public version miniVite C++

CANDLE
Benchmarks

Python NEKbone Fortran
OpenACC,
OpenACC+CUDA

Ember MPI/SHMEM N/A PICSARlite Fortran

ExaMiniMD C++ Kokkos SW4lite C, C++,
Fortran

CUDA, RAJA

Laghos C++ CUDA, RAJA,
OCCA

SWFFT C

MACSio C N/A thornado-mini Fortran

miniAMR C No public version XSBench C OpenACC,
OpenCL, AMP

miniQMC C++ Kokkos OpenMP

6

Acknowledgements

Slides & information for discussion of new mini-apps provided by:

• miniVite: Mahantesh Halappanavar, Sayan Ghosh

• miniQMC: Paul Kent

• thornado-mini: Bronson Messer

• PICSARlite: Jean-Luc Vay

• Ember: Si Hammond

7

Graph Clustering (community detection)

• Problem: Given G(V,E,w), identify tightly knit groups of
vertices that strongly correlate to one another within their
group, and sparsely so, outside.

Input :
Ø V = {1,2,… n }
Ø E: a set of M edges
Ø w(e): weight of edge e

(non-negative)
Ø m = S"eÎE w(e)

Output :
Ø A partitioning of V into

k mutually disjoint clusters
P = {C1, C2,… Ck}
such that: … ?

miniVite (/’vi:te/)
• Implements a single phase of Louvain

method (without rebuilding the graph)
• Capable of generating synthetic Random

Geometric Graphs (RGG) in parallel (needs
random numbers)
– Can also add random edges across processes

• Can also use real world graphs as input
(have to convert to a binary format first)

• Parts of code has multiple communication
options (can be selected at compile time) –
Sendrecv, NB Isend/Irecv (default), MPI
RMA and Collectives

• About 3K LoC

miniVite

Parallel
RGG

generator

MPI I/O
binary file

reader

Parallel LCG
(random
numbers)

C++11

Single
Phase

Louvain

MPI

8

Graph clustering OR
Community detection

• Communities: Nodes/vertices of most real-world network/graphs tend to be organized into tightly-
knit modules known as communities or clusters

• In 2008, Blondel, et al. introduced a multi-phase, iterative heuristic for modularity optimization,
called the Louvain method

• Goodness of partitioning into communities is typically measured using a global metric called
modularity
– Depends on sum of edge weights between vertices within a community (e_ij), and sum of weights

incident upon a community (a_c)

9

Louvain algorithm
• Initially each vertex assigned to

a separate community
• Within each iteration

– Compute delta Q when a
vertex migrates

– Move vertex from current
community to one that yields
max delta Q

• Phase continues until delta Q
between successive iterations
is below a threshold

• At the end of each phase,
graph is rebuilt

Rebuilding is nontrivial,
may takes ~1-10% of the
overall phase time
depending on input
graph and volume
of vertex movement

10

Simple vertex-based data distribution

ghosts/cross edges

Parallel Random Geometric Graph (RGG) generator
• Constructed by randomly placing N nodes

within a unit square – only add an edge
between two vertices if their distance is
within a range d
– Basically, generate random numbers within (0,1)

and compute euclidean distance between two
points, if it is less than d, add an edge

– RGG is known to demonstrate community
structure (high modularity)

• We distribute equal number of vertices
across processes, each process may have
(cross) edges with its up or down neighbor

• Option to add random number of (cross)
edges across processes that are far apart

1/p{0,0}
Y

X

{1/p,1}{0,1/p}

{0,2/p}

{0,3/p}

{2/p, 1}
{3/p, 1}

{4/p, 1}
1/p > d

p=
1,

 d
eg

=6
, m

od
=0

.7
61

p=
8,

 d
eg

=6
, m

od
=0

.7
84

p=
2,

 d
eg

=6
, m

od
=0

.7
49

p=
4,

 d
eg

=6
, m

od
=0

.7
54

p = 8

p = 1 p = 2

p = 4

11

Results

For a number of real world graphs, first phase of Louvain method
does the most work (little difference between first and final phase)

RGG of 134.2M vertices and 1.6B edges on NERSC Cori

Processes NB Send/Recv Collectives Sendrecv RMA
512 7.48492 7.35221 11.2029 7.39827
1024 6.52832 5.56177 13.2942 5.93101

12

Performance analysis (I)

1. HPCToolkit profiling shows over 60% of time spent in managing and communicating
vertex-community information

2. About 40% is spent on global communication (MPI_Allreduce) for computing modularity

13

14

https://qmcpack.org

Developed and released via
github.com/QMCPACK/qmcpack

Pull request reviews, continuous
integration & integration testing.

UIUC/NCSA open source license.

~330K code lines, <100K “core”

C++11 (14 soon), MPI, HDF5, XML, FFTW.

OpenMP (walker level only) and CUDA
(old) on node. Different vectorization /
parallelization scheme for GPU & CPU.
Major development + maintenance
headache.

Miniapps: miniqmc, miniafqmc under
github.com/QMCPACK . Use for
prototyping, experimenting with individual
kernels etc.

1 © 2018 IOP Publishing Ltd Printed in the UK

Journal of Physics: Condensed Matter

QMCPACK: an open source ab initio quantum
Monte Carlo package for the electronic
structure of atoms, molecules and solids

Jeongnim Kim1 , Andrew T Baczewski2, Todd D Beaudet3, Anouar Benali4,5,
M Chandler Bennett6, Mark A Berrill7, Nick S Blunt8, Edgar Josué
Landinez Borda9, Michele Casula10, David M Ceperley11, Simone Chiesa11,
Bryan K Clark11, Raymond C Clay III2, Kris T Delaney12, Mark Dewing5,
Kenneth P Esler13, Hongxia Hao14, Olle Heinonen15,16, Paul R C Kent17,18 ,
Jaron T Krogel19, Ilkka Kylänpää19, Ying Wai Li20, M Graham Lopez7,
Ye Luo4,5 , Fionn D Malone9 , Richard M Martin11, Amrita Mathuriya1,
Jeremy McMinis9, Cody A Melton6, Lubos Mitas6, Miguel A Morales9,
Eric Neuscamman21,22 , William D Parker23 , Sergio D Pineda Flores21,
Nichols A Romero4,5, Brenda M Rubenstein14, Jacqueline A R Shea21,
Hyeondeok Shin5, Luke Shulenburger2, Andreas F Tillack20,
Joshua P Townsend2 , Norm M Tubman21, Brett Van Der Goetz21,
Jordan E Vincent11, D ChangMo Yang24 , Yubo Yang11, Shuai Zhang9
and Luning Zhao21

1 Intel Corporation, Hillsboro, OR 987124, United States of America
2 Sandia National Laboratories, Albuquerque, NM 87185, United States of America
3 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA
22904, United States of America
4 Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, United
States of America
5 Computational Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
of America
6 Department of Physics, North Carolina State University, Raleigh, NC 27695, United States of America
7 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
United States of America
8 University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
9 Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
10 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne
Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France
11 Department of Physics, University of Illinois, Urbana, IL 61801, United States of America
12 Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, United States
of America
13 Stone Ridge Technology, Bel Air, MD 21015, United States of America
14 Department of Chemistry, Brown University, Providence, RI 02912, United States of America
15 Material Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America
16 Northwestern-Argonne Institute for Science and Engineering, Northwestern University, Evanston, IL
60208, United States of America
17 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
United States of America
18 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831, United States of America
19 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
United States of America
20 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
United States of America
21 Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
22 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United
States of America

J Kim et al

QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids

Printed in the UK

195901

JCOMEL

© 2018 IOP Publishing Ltd

30

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aab9c3

Paper

19

Journal of Physics: Condensed Matter

IOP

2018

1361-648X

1361-648X/18/195901+29$33.00

https://doi.org/10.1088/1361-648X/aab9c3J. Phys.: Condens. Matter 30 (2018) 195901 (29pp)

Citation paper with high level method & algorithm descriptions
J. Kim et al, Journal of Physics: Condensed Matter 30 195901 (2018)

https://doi.org/10.1088/1361-648X/aab9c3

Open access this year

https://doi.org/10.1088/1361-648X/aab9c3

15

High-level Algorithms

CPU Algorithm
do time step i [1K-100K per MPI task]

do walker j [1 per core, OpenMP]
do electron k [0.1-10K]

do component l [3-4]
advance WF

end l
end k
evaluate Hamiltonian

end j
spawn/kill walkers, load balance

end i

Today, GPU operates on walkers (Markov chains) in a “batch” to reduce kernel launch overhead,
particularly for small problems (N<few 100). CUDA kernels operate on multiple walkers at once.

Drawbacks: Multiple drivers, Extra APIs through entire app, Code divergence, Memory bandwidth still
stressed...

GPU Algorithm: 1 MPI task/GPU
do time step i

do electron k (lock step)
do component l

advance WF of all the walkers [10-1000]
end l

end k
evaluate Hamiltonian of all the walkers
spawn/kill walkers, load balance

end i

16

miniQMC

• miniQMC is a mini-app for QMCPack, which is a Quantum Monte Carlo
code
– The goal of QMCPack is to provide highly accurate calculations of the properties of

complex materials

• Computational motifs include: particle methods, dense and sparse linear
algebra, and Monte Carlo

• The version we are using is based on version 3.1.0 of QMCPack

17

miniQMC computation

• QMCPack utilizes an ensemble of walkers which represent particle positions and
are moved through space by a drift-diffusion process

• The miniQMC calculation utilizes one walker per rank with a predefined problem
to focus on single node performance

• The size of the problem space for the walker in miniQMC can scaled at runtime
by replicating the space by tiling

• There is no MPI communication in miniQMC since the mini-app is focused on the
computational portion of the app

18

Significant kernels

• Update – Sherman-Morrison rank-1 NxN matrix inverse update
Strongly memory bandwidth limited. Source of N3 scaling.

• Spline – 3D spline value & gradients 4x4x4xN stencil, membw limited

• Jastrow functions – Small classical MD force-field like polynomial
evaluations using distances+cutoffs from electron
positions. One and two-body forms most common.

• Distance tables – Interparticle distances with minimum image
convention/periodic boundary conditions applied.

• Others, depending on threadability of above.

LIGO

ExaStar
nuclear

astrophysics
simulation

• ExaStar simulations are essential to:
• Guide future nuclear physics

experimental programs
• siting the r-process directly impacts

which rates are most important to
measure

• Provide reliable templates for
gravitational wave and neutrino
detectors
• Low signal-to-noise requires

templates for matching
• Interpret X-ray and gamma-ray

observations
• ExaStar simulations will incorporate:

• experimental nuclear physics data

• satellite observations of astrophysical
phenomena

• GW detections

• neutrino experimental data, including solar
and reactor experiments

to improve predictive power

radiation
Equation of State Module

local, tabulated

microphysics

gravity

dynamics
reactions

block-
structured
adaptive

mesh
refinement

Two-moment Transport
Semi-implicit Discontinuous

Galerkin methods

Opacity Module
tabulated, scattering kernels

Boltzmann Transport
Implicit Monte Carlo methods

Nuclear Reaction Networks
sparse stiff linear systems

Compressible Hydrodynamics
Finite Volume Godunov methods Lagrangian tracer Particles

for post-processing

Approximate relativity
Conformally flat approx.

Elliptic eq w/ multigrid methods

magnetohydrodynamics

Full general relativity
DG methods for Einstein Eq.

ExaStar
multiphysics

radiation transport
will be >90% of all
FLOPs in
challenge problem

21

thornado-mini represents neutrino radiation transport
(80-90% of FLOPS in ExaStar challenge problem)

• Key computational motifs are structured mesh,
dense linear algebra

• The problem size is defined by the number of elements
used, the number of energy groups, and the resolution
of the interaction table used.
– The problem solved in the mini-app (Deleptonization) uses

production values for elements and energy groups
(2 and 20, respectively), but the table is about quarter-resolution in the three dimensions.

• The mini-app is, in fact, the development vehicle for the finite-element transport
algorithms, the mini-app is slowly updated with new implementations. GPU-
enabled version (1.1) will be available in March, 2019.

22

WarpX: Exascale Modeling of
Advanced Particle Accelerators

WarpX has code connecting the 3 components
lWarp: original Python code (no longer needed!)
lAMReX: data and communication
l PICSAR: kernels, also a self-contained mini-app

23

The Particle-In-Cell (PIC) method

Different regimes:
l Particle-dominated, >>1 particle/cell
l Commensurate, ~1 particle/cell
l Field-dominated, <<1 particle/cell

24

Time breakdown on 1 KNL node,
50 particles/cell

Report is on Confluence: ADSE06-WarpX_Milestone_report_FY18.2.pdf

25

Roofline model on 1 KNL node,
32 particles/cell

PICSAR kernels mostly memory-bound.
Shown here:
Charge Deposition, Field Gather, Particle Push.

26

PICSARlite was created to simplify looking a PIC challenges

• Reduced loc from over 80,000 to under 10,000
– Most steps have multiple options or algorithms. Simplified to only one.
– Led to script that will automatically reduce PICSAR to a smaller code base containing only the

selected methods

• WarpX team is interested in reducing communication:
– merging messages
– overlapping communication with computation

l WarpX team has a mini version of WarpX (using only simplest version of each
PIC kernel) implemented on SummitDev.

27

Modeling Communication Patterns for Exascale

• Exascale systems are likely to be some of the largest HPC machines ever built
– Implies larger scale and higher performance demands for network interconnects
– Additional opportunities to add hardware support for some communication operations to

reduce latency, improve operation throughput and increase performance

• What we (HPC community, vendors etc) need are:
– Good models of primitive communication patterns that HPC codes routinely execute (so we

can analyze the impact of hardware changes on full system performance)
– Methods to easily scale communication models so we can evaluate broad range of Exascale

system options (traces lock us in to specific rank counts and configurations)
– Flexible parameterization of communication patterns to reflect choices in decomposition that

could be important (e.g. when using a GPU versus a CPU versus a …)
– Note: we cannot represent every communication pattern in every application, we need to

capture a small subset from which important characteristics of network performance can be
modeled in order to support tractable analysis of future systems

28

Ember Communication Patterns

• Ember is a suite of communication patterns that have been
developed since 2012 in collaboration with leading industry
vendors (Cray, IBM, Intel, HPE, ..)
– Designed originally to work in the SST Simulator as a scalable model

of DOE workloads (https://github.com/sstsimulator)

– Highly parameterizable to easily replicate behavior across range of
DOE code bases

– Flexible enough to scale from small node counts to over a million
simulated MPI ranks (much easier to use than communication
traces)

– Can encode complex, dynamic behavior which traces cannot capture

– Generic enough to work in any simulation environment

• For ECP Proxy Applications several communication patterns
have been turned into simple, equivalent MPI/SHMEM drivers
to run on HPC systems

Ember

Hades/Hermes

Fire Fly

Merlin

(App Model)

(MPI)

(NIC)

(Net.)

http://github.com/sstsimulator/ember

29

Using Ember Communication Patterns

• How can I use Ember Communication Patterns?
– Two main choices: (1) Run the MPI/SHMEM implementations, (2) Run the patterns on one of

DOE’s simulation environments (e.g. SST, CODES..)

• What is the SST Simulator?

– Parallel, Conservative, Discrete-Event Hardware Simulation Environment

– Can simulate cycle-accurate models of single compute nodes through to full-scale models of

system interconnects

– Validated against DOE machine installations

– Used by industry vendors (Cray, Intel, IBM, HPE, etc)

– Email: wg-sst@sandia.gov for more information

– Go to: https://sst-simulator.org

mailto:wg-sst@sandia.gov
https://sst-simulator.org/

30

Example Uses of Ember

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M8M 64M

us

MsgSize

BG/Q PingPong Latency Measured and Ember

BG/Q
Ember

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

1K 4K 16K 64K

Ti
m

e
us

.
Ranks

Halo3D, Random Arb, Random Placement, Link Bandwidth 125 GB/s

160 TF/s, Linear
160 TF/s, Random

40 TF/s, Linear
40 TF/s, Random

10 TF/s, Linear
10 TF/s, Random

Simulator/Performance Model
Validation

Projection of Communication Patterns
For Future Exascale Machine Configurations

31

Communication Patterns included in Ember

• Nearest neighbor (Structured, halo communication)

• Nearest neighbor (Unstructured, halo-like communication, varying message
sizes)

• Wavefront sweeps

• MPI Collective operations (reduction, all-gather, scatter, etc)

• Random, fine-grained messaging (closer to large-scale graph analysis)

• FFTs (all-to-all messages)

• Network in-casts (many to few communication flows, also represent I/O
transfers)

32

Assessment Activities

• Goal
– Performance characterization and identification of underlying hardware bottlenecks that

negatively impact performance of both proxy and parent application
• On current generation platforms
• Using Exascale challenge problems where possible, otherwise a challenge problem on current

systems
– Determine quantitatively if the proxy represents the parent as intended (e.g., memory,

communication, computation)
– Target 8 new proxy/parent pairs per year
– Looking at both CPU and GPU-based performance

33

Standard Performance Characterization

• Dynamic profiling to determine hot functions

• Roofline model to understand upper bound
– Cache and memory bandwidths
– FLOPS/arithmetic intensity

• For both proxy and parent and for whole execution and for each of top 10
functions (10 functions that account for largest percentage of total execution
time)
– Cache and memory bandwidths
– FLOPS/arithmetic intensity

34

Baseline using Roofline Model

• miniQMC

1/11/2019 Intel Advisor - /ascldap/users/oaaziz/roofline/vec_project/miniqmc_1000600

file:///Users/oaaziz/D/collected_data/roofline/report_miniqmc.html 1/1

35

Profugus roof line from Brian

36

Profugus Dynamic Profile from Brian

37

Identifying Hardware Bottlenecks

• Drill-down on memory bounded-ness
– Implemented Intel’s Top-Down Microarchitecture Analysis (TMA) into LDMS

• Fast, flexible, and get per-process data
– Currently validating TMA methodology

• Does it really identify bottlenecks correctly?

38

QMCPack, NiO256 atoms on Skylake

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Front-End Bound Bad Speculation Backend Bound Retir ing

Top-Down Analysis, Level 1

Yellow dashes are
bottleneck thresholds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Memory Bound Core Bound

Backend Bound, Level 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 L1 bound L2 bound L3 bound DRAM bound Store bound

Backend Bound Level 3: Memory Bound

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 Memory Bandwidth Memory Latency

Backend Bound Level 4: DRAM Bound

0

1

2

3

4

5

6

 Local DRAM Remote DRAM Remote cache

Backend Bound Level 5: Memory Latency Bound

TMA identifies the
same bottlenecks
for miniQMC

39

Function Drill-Down: Dynamic Profiles
• MiniQMC

evaluated_vgh
25%

set
17%

moveOnSphere
13%

evaluate_
v…

ratio
5%

other
27%

MINIQMC - 1 X 8 X 1

evalutate
20%

evalutate_vgh
14%

move
12%moveOnSphere

12%

evaluate_v
7%

other
35%

MINIQMC - 1 X 1 X 32

Instrumented these functions, currently collecting TMA and other hardware performance counters to
better understand composite behavior.

40

GPU Characterization

• Motivation
– Large proportion of performance on exascale computers expected to come from accelerators

such as GPUs.
– Tradeoffs between performance and portability depending on GPU program model used.
– Application may have different characteristics and bottlenecks on GPU vs. CPU architectures.

• Goal is to use proxy apps to answer the following questions:
– What are the implications of GPU architecture trends for ECP applications?
– What GPU programming models will enable the best performance portability across future

accelerator architectures?
– What software optimizations are key to achieving good performance on GPU architectures?

41

Interaction with ECP AD Teams

Best practices for proxy app development for GPUs (Proxy App team can help as

resources allow)

– Provide proxy app configurations and inputs representative of exascale application problems

(can be scaled back to reduce runtime and number of nodes)

– Keep proxy app up-to-date with main app development

• In some cases (e.g., SW4lite, ProfugusMC), proxy app leads GPU development

– Provide feedback on Proxy App team assessment results (maybe we missed something)

– Optimize proxy app GPU implementation for new GPU architectures and features

• Most time-consuming kernels are the most important.

42

Why GPU Assessment Matters

• Ask yourselves
– If a vendor uses my proxy app to help with design decisions for GPU architecture features,

will the result benefit performance of my application?
– If my proxy app is used for procurement decisions for a machine with accelerators, will the

resulting machine architecture and configuration match my application requirements?

• If you don’t have a representative GPU implementation that is agile enough to be
easily built and run (including on simulators and prototypes), your application will
not influence these decisions!

43

GPU Assessment Procedure

• Similar to CPU assessment that has already started
• Steps

– Obtain code and inputs for CPU and GPU versions
– Build and run CPU and GPU versions and verify results
– Profile execution
– Collect characterization data

• Instruction mix
• Achieved cache and memory bandwidths
• Communication characteristics

– Analysis
• Compare full and proxy app characteristics
• Roofline models
• Identify performance and scaling bottlenecks

44

SW4lite Performance on P100 vs. V100

LOH.1-h100.in input running
on one GPU

45

SW4lite Results on Summit

Test case Ngp Nts Nodes GPUs Runtime (sec)
LOH.1-h100 1.55e7 1073 1 1 19.4
LOH.1-h100 1.55e7 1073 1 6 5.16
LOH.1-h50 1.23e8 1073 1 3 55.4
LOH.1-h50 1.23e8 1073 1 6 31.8
LOH.1-h50 1.23e8 1073 2 8 25.4
LOH.1-h25 9.82e8 1073 2 12 115
LOH.1-h25 9.82e8 1073 4 24 69.7

Remarks:
• Reasonable strong scaling
• Weak scaling is not good (much worse that SW4 on Cori 2 KNL, where runtime increased 6%

going from h100 to h50 and increased 30% going from h50 to h25)

46

Clustering Analysis of Proxy Representativenes

Define
Resource
Domain

Identify
Collectible

Metrics

Principal
Component

Analysis
Hierarchical
Clustering

Specific
Data

Analyses

Collect
Data

Long Data Vectors

IEEE Cluster 2018, ““A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”

47

Broadwell Basic Node Hardware Metric Clustering

48

Broadwell Communication Clustering

49

Proxy/Parent Communication Similarity

• Communication metrics based on behavior (not MPI primitives used)
– Pairwise communication data analysis

• Point to point communication patterns (source, destination)
• Total number of messages sent for each pair
• Using CrayPat tool

– Communication vector data clustering
• KB/sec - Total size of data transferred (KB) / total execution time (sec)
• MPI KB/sec - Total size of data transferred (KB) / total time spent in MPI (sec)
• Message size histogram data
• Using mpiP tool

PMBS2018, “Exploring and Quantifying How Communication Behaviors in Proxies
Relate to Real Applications”

Results

Parent/Proxy
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

SW4/
SW4lite

100 100 100 100 1 1 1 1 1 1

SW4 SW4Lite
50

33463347

LAMMPS ExaMiniMD
Results

Parent/Proxy
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

LAMMPS/
ExaMMD

100 100 100 100 0 0 0 0 0 0

51

207027208

14414 20703

Results

Parent/Proxy
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

HACC/
SWFFT

51.7 29.4 71.4 71.4 0.58 0.31 0.61 0.28 0.87 0.81

52
HACC SWFFT

200178

1210 500

Nek5K 3D Nekbone
Results

Parent/Proxy
Parent in Proxy Proxy in Parent Full Set Parent in Proxy Proxy in Parent

#msg #pair #msg #pair PCorr SCorr PCorr SCorr PCorr SCorr

Nek5K 3D/
Nekbone 3D

99.9 51.4 58.0 68.4 -0.1 -0.05 -0.65 -0.23 0.04 0.49

53

65124

35046 15342

54

Acknowledgment

This research was supported by the Exascale Computing Project (ECP), Project
Number 17-SC-20-SC, a collaborative effort of two DOE organizations, the Office
of Science and the National Nuclear Security Administration, responsible for the
planning and preparation of a capable exascale ecosystem including software,
applications, hardware, advanced system engineering, and early testbed
platforms, to support the nation’s exascale computing imperative.

55

Questions???

exascaleproject.org

Thank you!

