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ECP Proxy App Project: Objectives and Scope

« Assemble and curate a proxy app suite that
represents the most important features (especially
performance) of exascale applications.

» Improve the quality of proxies created by ECP and
maximize the benefit received from their use.

— Set standards for documentation, build and test systems,
performance models, etc.

» Assess the representativeness of proxies

* Project team members at LLNL, LANL, SNL, LBNL,
ORNL, ANL




Over 50 proxy apps can be installed using Spack

Builds multiple versions, configurations, and compilers

Encourages “standard” build recipes that conform to
common build systems (e.g. Autotools, CMake, Makefile)

Ease of aggregation
* spack fetch <package_name> to just download the vanilla source

* spack install --source <package_name> to just download the possibly
patched source

Proxies can be build as a whole or separately the “Spack”
way
— Different compilers and with or without system libraries

Currently using Spack for continuous integration

Spack



We maintain a catalog of over 50 proxy apps

Catalog
« Work underway on

collecting/distributing
Y o ] | o | oo | oome | o | o | conmmmnen multiple versions of proxies

AMG | C ASPA | C++ CANDLE Benchmarks | Python — Issues with maintainability,
welc il : vy Appiation Mt scel, o Banchm consistency, releasability, etc.

e » Contributions are welcome.
CLAMR | C++

CloverLeaf | Fortran o — Submit your proxy information
A it soves £ compresstie e rtoermert mi-agp deveoped a4 » comascaon ataa o HPC cosen. T through the proxy app
%0 miOpmct. website
CloverLeaf3D | Fortran

CoGL | C++
CoHMM | €

O eOL

https://proxyapps.exascaleproject.org E\(\’E\\)p
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https://proxyapps.exascaleproject.org/

We released version 2.0 of the ECP Proxy App Suite in Oct 2018
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CANDLE
Benchmarks

ExaMiniMD

Laghos
MACSio

miniAMR

Python
MPI/SHMEM

C++

C++

C

No public version

N/A

Kokkos

CUDA, RAJA,
OCCA

N/A
No public version

Kokkos OpenMP

NEKbone Fortran
Fortran
SWalite C, G+,
Fortran
SWFFT C
Fortran
XSBench C

e
C++

OpenACC,
OpenACC+CUDA

CUDA, RAJA

OpenACC,
OpenCL, AMP
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Northwest ~ Graph Clustering (community detection)

* Problem: Given G(V,E, w), identify tightly knit groups of
vertices that strongly correlate to one another within their
group, and sparsely so, outside.

Input : _
>V={12..n) Output :

» A partitioning of V into
k mutually disjoint clusters
P={C, C,...CJ}
such that: ... ?

» E: a set of M edges
> w(e): weight of edge e
(non-negative)

»m= ZVGEE C()(e)




miniVite (/’vi:te/)

Implements a single phase of Louvain
method (without rebuilding the graph)

Capable of generating synthetic Random
Geometric Graphs (RGG) in parallel (needs
random numbers)

— Can also add random edges across processes

Can also use real world graphs as input
(have to convert to a binary format first)

Parts of code has multiple communication
options (can be selected at compile time) —
Sendrecv, NB Isend/Irecv (default), MPI
RMA and Collectives

About 3K LoC

miniVite




Graph clustering OR
Community detection

Communities: Nodes/vertices of most real-world network/graphs tend to be organized into tightly-
knit modules known as communities or clusters

In 2008, Blondel, et al. introduced a multi-phase, iterative heuristic for modularity optimization,
called the Louvain method

Goodness of partitioning into communities is typically measured using a global metric called
modularity

— Depends on sum of edge weights between vertices within a community (e_ij), and sum of weights
incident upon a community (a_c)

...“ Q= Z[%_(2n7)]

@ c @ ® where:
'-..‘ ® 0 ‘ ej=) w;:Vij€c, and {i,j} € E
e N ) ac=2 k

IEC



Louvain algorithm

Input: Graph G = (V, E), threshold T, Initial com-

munity assignment, C;,;

1: Qprev ¢ —00

2: Cprev < Initialize each vertex in its own community
3: while true do

4: forallve Vdo

5: N(v) < neighboring communities of v

6: targetComm <« argmax;¢y, AQ(v moving to t)
7: if AQ > 0 then

8: Move v to targetComm and update Ceyrr
9: Qcurr + ComputeModularity(V, E, Ccurr)

10: if Qcurr — Qprev < T then

11: break

12: else

13: Qprev + Qcurr

Rebuilding is nontrivial,
may takes ~1-10% of the
overall phase time
depending on input
graph and volume

of vertex movement

2@ —

4
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Initially each vertex assigned to
a separate community

Within each iteration

— Compute delta Q when a
vertex migrates

— Move vertex from current
community to one that yields
max delta Q

Phase continues until delta Q
between successive iterations
is below a threshold

At the end of each phase,
graph is rebuilt

Simple vertex-based data distribution

1L T

ghosts/cross edges 10



Parallel Random Geometric Graph (RGG) generator

X
* Constructed by randomly placing N nodes {0,0} ]_ 1/p l_)
within a unit square — only add an edge (0,1/p} 11/p1} Y
between two vertices if their distance is ’ {le' 1)

within a range d {0,2/p} ’
— Basically, generate random numbers within (0,1) {0,3/p} {3/p, 1}
and compute euclidean distance between two !

points, if it is less than d, add an edge {4/p, 1}

— RGG is known to demonstrate community
structure (high modularity)
* We distribute equal number of vertices
across processes, each process may have
(cross) edges with its up or down neighbor

* Option to add random number of (cross)
edges across processes that are far apart

1/p>d

0.761
0.749

2, deg=6, mod

1, deg=6, mod

0.754 p
0.784 P

4, deg=6, mod
8, deg=6, mod
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Results

FIRST PHASE OF LOUVAIN METHOD VS THE LAST PHASE FOR REAL WORLD INPUTS ON 1K PROCESSES OF NERSC Corl.

. ) First phase
Graphs ertices | #Edges | Modularity |y Time (ln 5) | Phases | Ticrations | Time (a5

friendster 63.6M 38 0.624 43 563201 k) 0 567.173
it- 2004 4T3M 1158 0.97% 4 45064 g 91 45849
nlpkk FIOM 3013 0.939 3 337 3 832 IT084

sk- 2005 S0.6M 198 0.971 1L 71562 3 &3 T304

orkut M 117.0M 0472 89 593 3 81 3964
sinaweibo SE6M T 261M 0,482 3 2035 4 108 RI1216
twitter-2010 21.2M 265M 0478 3 209,385 4 184 IR0, 483
uk 2007 108 8M 3B 0972 9 I 6 39 370887
web-ccl2-paylviadmin | 428M 128 0.687 31 140,393 4 159 14692
webbase- 2001 e B 0983 ] 14702 7 239 24433

For a number of real world graphs, first phase of Louvain method
does the most work (little difference between first and final phase)

Processes| NB Send/Recv |Collectives|Sendrecv]/ RMA
512 7.48492 7.35221 | 11.2029 | 7.39827
1024 6.52832 5.56177 | 13.2942 | 5.93101

RGG of 134.2M vertices and 1.6B edges on NERSC Cori

12



Performance analysis ()

» main €.40e+11 100.0
loop ot main.cpp: 212 | €. 04es11 99,08
®» 230 astLouvairMethod(re, ine, DistGraph consth, std vector<iong, std alocator<iong> >6, double, double) £.2%411 00N

loop & distLouvainMethodNew.cpp: 47 | §.34e411 37.5%

¢ B ES 1] _INTERNAL 24 dstLouvainMethodNew cpp_2cB85371d dstComputeModularty(Graph corsth, std vectory 2.67a+11 41,67

. @58 _INTERNAL 24_dstiouvainMethodNew_cpp_2¢8537cd | MRemoteCommunties{DistGraph constés, int, int, std 2160411 33,78

v B ES: _kmpc_fork_cal 1.0 0e411 21,60

. ® 125 _INTERNAL_24_dstLouvainMethodNew_cpp_2¢8537 ¢l updateRemateCommunities(DistGragh consts, std:| 1.10e+0% 0.5%

® 105 _ kmpc_fork_coll $.62e+07 0,08

® 46 _INTERNAL_24_distLouvainMethodNew_cpp_2¢B537ca exchangevertexReqs DistGraph consth, int, ) | 3. 04es08 0,68

» 138 [l sta unordered_map<iong, long, std: hash<lond>, std equal_to<iong>, std: alocator<std pair<iong cong 2.6)et0k 0.0%

® 34 _INTERNAL_24_dstLouvainMethodNew_cpp_2¢8537ca distintLouvain(Dist Gragh constés, std::vecter<iong, std| 2.46a408 0,00

¢ 245 antbuidNextLevelCraph(ire, ke, DmGraph®f, sta vector<iong, std. alocater<iong> »£) $.06e+0% 0.3%

. 99 145 loadDistGraghMPIO(ing, nt, DistGraph® G, sta: stringh) | €.11e40% 1.0%
. P9 365 M Finalize 2.64e+08 0.0%

1. HPCToolkit profiling shows over 60% of time spent in managing and communicating
vertex-community information
2. About 40% is spent on global communication (MPI_Allreduce) for computing modularity



QMCPACK https:ligmepack.org

Developed and released via
github.com/QMCPACK/gmcpack

P u I I req u eSt reVIGWS, CO ntl n u O u S 10P Publishing Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 30 (2018) 195901 (29pp) https://doi.org/10.1088/1361-648X/aab9c3
integration & integration testing. . ene
9 9 9 QMCPACK: an open source ab initio quantum

UIUC/NCSA open source license. Monte Carlo package for the electronic
~330K code lines, <100K “core” structure of atoms, molecules and solids
C++11 (14 soon), MPI, HDF5, XML, FFTW. et ozl 1000 D Besudet, Anouay Benlr

Landinez Borda®, Michele Casula'?, Davi_d M CeperIeYZ”, Simone (_:hitzsa”,
OpenMP (walker level only) and CUDA z;v:,:;;‘;'ag:.e;5,65:’:;;:;;;&,'g_;,::;;;f;z?;z, S o Kond s,
(old) on node. Different vectorization / Ve oo el Ficarg 1 Har Aot oty
parallelization scheme for GPU & CPU. 2L A S e e,
Major development + maintenance ‘ _ ' _ ._
headache. Citation paper with high level method & algorithm descriptions

J. Kim et al, Journal of Physics: Condensed Matter 30 195901 (2018)

Miniapps: minigmc, miniafgmc under https://doi.org/10.1088/1361-648X/aab9c3
github.com/QMCPACK . Use for _
prototyping, experimenting with individual Open access this year
kernels etc.
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High-level Algorithms

Today, GPU operates on walkers (Markov chains) in a “batch” to reduce kernel launch overhead,
particularly for small problems (N<few 100). CUDA kernels operate on multiple walkers at once.

Drawbacks: Multiple drivers, Extra APls through entire app, Code divergence, Memory bandwidth still

stressed...

CPU Algorithm
do time stepi [ 1K-100K per MPI task ]
do walkerj [ 1 per core, OpenMP ]
do electron k[ 0.1-10K ']
do component | [ 3-4 ]

advance WF
end |
end k
evaluate Hamiltonian
end j
spawn/kill walkers, load balance

end i

GPU Algorithm: 1 MPI task/GPU
do time step i

do electron k (lock step)
do component |

advance WF of all the walkers [10-1000]

end |
end k
evaluate Hamiltonian of all the walkers

spawn/kill walkers, load balance
end i

ECP

EXASCALE
COMPUTING
PROJECT




miniQMC

* miniQMC is a mini-app for QMCPack, which is a Quantum Monte Carlo
code

— The goal of QMCPack is to provide highly accurate calculations of the properties of
complex materials

« Computational motifs include: particle methods, dense and sparse linear
algebra, and Monte Carlo

« The version we are using is based on version 3.1.0 of QMCPack

Vo s
16 E\(C [ SR
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miniQMC computation

« QMCPack utilizes an ensemble of walkers which represent particle positions and
are moved through space by a drift-diffusion process

* The miniQMC calculation utilizes one walker per rank with a predefined problem
to focus on single node performance

* The size of the problem space for the walker in miniQMC can scaled at runtime
by replicating the space by tiling

* There is no MPl communication in miniQMC since the mini-app is focused on the
computational portion of the app
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Significant kernels

» Update — Sherman-Morrison rank-1 NxN matrix inverse update
Strongly memory bandwidth limited. Source of N3 scaling.
» Spline — 3D spline value & gradients 4x4x4xN stencil, membw limited

« Jastrow functions — Small classical MD force-field like polynomial
evaluations using distances+cutoffs from electron
positions. One and two-body forms most common.

 Distance tables — Interparticle distances with minimum image
convention/periodic boundary conditions applied.

» Others, depending on threadability of above.



T * ExaStar simulations are essential to:

\
 Guide future nuclear physics
experimental programs

- siting the r-process directly impacts
). which rates are most important to
measure
* Provide reliable templates for
gravitational wave and neutrino
detectors

- Low signal-to-noise requires
templates for matching

* Interpret X-ray and gamma-ray
observations

ExaStar 8§\
nuclear Q
astrophysics et

simulation &%

s
g

« ExaStar simulations will incorporate: (\ NEUTRIND
 experimental nuclear physics data y
- satellite observations of astrophysical L I G 0
phenomena N \

* GW detections

* neutrino experimental data, including solar
and reactor experiments

to improve predictive power



dynamics

Compressible Hydrodynamics
Finite Volume Godunov methods

reactions Ean ta r

Nuclear Reaction Networks

sparse stiff linear systems mu |t| p hyS iCS

Lagrangian tracer Particles

magnetohydrodynamics

Approximate relativity
Conformally flat approx.
Elliptic eq w/ multigrid methods

Full general relativity
DG methods for Einstein Eq.

gravity

for post-processing

Two-moment Transport
JI1C Semi-implicit Discontinuous
ad Galerkin methods

- Boltzmann Transport
Implicit Monte Carlo methods

radiation

Equation of State Module
local, tabulated

radiation transport

Opacity Module will be >90% of all

tabulated, scattering kernels .
FLOPs in

microphysics challenge problem
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thornado-mini represents neutrino radiation transport
(80-90% of FLOPS in ExaStar challenge problem)

« Key computational motifs are structured mesh,
dense linear algebra

* The problem size is defined by the number of elements
used, the number of energy groups, and the resolution
of the interaction table used.

— The problem solved in the mini-app (Deleptonization) uses

production values for elements and energy groups
(2 and 20, respectively), but the table is about quarter-resolution in the three dimensions.

* The mini-app is, in fact, the development vehicle for the finite-element transport
algorithms, the mini-app is slowly updated with new implementations. GPU-
enabled version (1.1) will be available in March, 2019.



WarpX: Exascale Modeling of
Advanced Particle Accelerators

WarpX = C++ main+outer loop+extra modules

* Python user interface

Warp * Collection of physics

Python main+outer loop+extra & user modules
. models & algorithms |
* AMR
AMReX -« Parallel I/O - loop(s) on AMR hierarchy (C++) - OpenMP/MP|
* Load balancing
PICSAR . H!!ﬁ;:ﬂ?lﬁl"!!!ﬂ!!ﬂ! h inner loop(s) on particle/grid arrays (FORTRAN)

WarpX has code connecting the 3 components

« Warp: original Python code (no longer needed!)
« AMReX: data and communication

« PICSAR: kernels, also a self-contained mini-app

S
Vo sosne
22 E\(C [ SR



The Particle-In-Cell (PIC) method

| A Push particles
' — ¥ ﬁc“ — /Newton-lorenu
- | P Add external forces Absorption/E mission
[ z | | , \
>\ 4
. - o Gather forces Deposit charge/current
I » —‘b‘ w Clouds of
‘ N | : ' partides
Axl | » | Fikering Filtering |
A potential/fields Wiy B charge/currents
i

Posss on/Maxwell

Different regimes:
. Particle-dominated, >>1 particle/cell

« Commensurate, ~1 particle/cell

COMPUTING
PROJECT

« Field-dominated, <<1 particle/cell E\(’E\P EEEEEEEE
\—
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Time breakdown on 1 KNL node,
50 particles/cell

128 box : 64 MPI

2.5
BN No vectonzation

z 2.0 - Vectonzed
3
® 15
S
a 10
o
Q
£ 0.8 1.2 X
= 2

0.0 -

CurrentDeposition FeldGather Redistnbute Cthers

Figure 9: Time taken by the most time-consuming routines (current deposition,
field gather, and particle redistribution), as well as by the lumped sum of the other
routines { “Others” ). The numbers above each blue bar indicates the speedup due
to vectorization.

"—\\ EXASCALE
" Report is on Confluence: ADSE06-WarpX_Milestone_report_FY18.2.pdf E\(\C\)P CameLiRG



Roofline model on 1 KNL node,
32 particles/cell

ROOFLINE WarpX CO: fll rhocell (25s)

. PP (4
CD: reduction (~1s) FG: compute coeffs (79s) (4s)

CD: compute coeffs (123)

Figure 12: Roofline model for WarpX for a simulation with 1258 x 128 x 128
cells and 32 particles per cell on a single Cori KNL node with 64 OpenMP threads
lhe particle shape factor is 3. This image was obtained using Intel Advisor

PICSAR kernels mostly memory-bound.

Shown here:

Charge Deposition, Field Gather, Particle Push.
. ECP ==



PICSARIite was created to simplify looking a PIC challenges

 Reduced loc from over 80,000 to under 10,000

— Most steps have multiple options or algorithms. Simplified to only one.
— Led to script that will automatically reduce PICSAR to a smaller code base containing only the
selected methods
« WarpX team is interested in reducing communication:
— merging messages
— overlapping communication with computation

« WarpX team has a mini version of WarpX (using only simplest version of each
PIC kernel) implemented on SummitDev.

Vo sosne
2 E\(C [ SR



Modeling Communication Patterns for Exascale

» Exascale systems are likely to be some of the largest HPC machines ever built

Implies larger scale and higher performance demands for network interconnects

Additional opportunities to add hardware support for some communication operations to
reduce latency, improve operation throughput and increase performance

* What we (HPC community, vendors etc) need are:

Good models of primitive communication patterns that HPC codes routinely execute (so we
can analyze the impact of hardware changes on full system performance)

Methods to easily scale communication models so we can evaluate broad range of Exascale
system options (traces lock us in to specific rank counts and configurations)

Flexible parameterization of communication patterns to reflect choices in decomposition that
could be important (e.g. when using a GPU versus a CPU versus a ...)

Note: we cannot represent every communication pattern in every application, we need to
capture a small subset from which important characteristics of network performance can be
modeled in order to support tractable analysis of future systems

Zl




Ember Communication Patterns

« Ember is a suite of communication patterns that have been
developed since 2012 in collaboration with leading industry
vendors (Cray, IBM, Intel, HPE, ..)

— Designed originally to work in the SST Simulator as a scalable model
of DOE workloads (https://github.com/sstsimulator)

— Highly parameterizable to easily replicate behavior across range of
DOE code bases

— Flexible enough to scale from small node counts to over a million
simulated MPI ranks (much easier to use than communication
traces)

— Can encode complex, dynamic behavior which traces cannot capture
— Generic enough to work in any simulation environment

(App Model)
(MPI)
|
(NIC)
Merlin (Net.)

* For ECP Proxy Applications several communication patterns

have been turned into simple, equivalent MPI/SHMEM drivers
to run on HPC systems

28

http://github.com/sstsimulator/ember

-
— \
\ EXASCALE
) COMPUTING
\ PROJECT



Using Ember Communication Patterns

el

* How can | use Ember Communication Patterns?

Two main choices: (1) Run the MPI/SHMEM implementations, (2) Run the patterns on one of
DOE’s simulation environments (e.g. SST, CODES..)

29

 What is the SST Simulator?

Parallel, Conservative, Discrete-Event Hardware Simulation Environment

Can simulate cycle-accurate models of single compute nodes through to full-scale models of
system interconnects

Validated against DOE machine installations
Used by industry vendors (Cray, Intel, IBM, HPE, etc)
Email: wg-sst@sandia.gov for more information

Go to: https://sst-simulator.org

_—
— \
\ EXASCALE
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Example Uses of Ember

100000

10000

1000

us

100

10

30

BG/Q PingPong Latency Measured and Ember

BG/Q ——
Ember ’/

4 16 64 256 1K 4K 16K 64K 256K 1M 4NMBM 64M
MsgSize

Simulator/Performance Model
Validation

Time us.

Halo3D, Random Arb, Random Placement, Link Bandwidth 125 GB/s

180 T T T T T T
160 TF/s, Linear —+—
170 - 160 TF/s, Random ------- 25 4
40 TF/s, Linear
40 TF/s, Random
10 TF/s, Linear

150 - 10 TF/s, Random |

160

140 | -
130 | 1
120 )
110

100

90 b

80 1 1 1 1 1 1
1K 4K 16K 64K

Projection of Communication Patterns
For Future Exascale Machine Configurations

/: \ EXASCALE
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PROJECT



31

Communication Patterns included in Ember

» Nearest neighbor (Structured, halo communication)

* Nearest neighbor (Unstructured, halo-like communication, varying message
sizes)

» Wavefront sweeps

« MPI Collective operations (reduction, all-gather, scatter, etc)

« Random, fine-grained messaging (closer to large-scale graph analysis)
* FFTs (all-to-all messages)

* Network in-casts (many to few communication flows, also represent I/O
transfers)

EEEEEEEE
CCCCCCCCC
EEEEEEE



Assessment Activities

e Goal

— Performance characterization and identification of underlying hardware bottlenecks that
negatively impact performance of both proxy and parent application
» On current generation platforms

* Using Exascale challenge problems where possible, otherwise a challenge problem on current
systems

— Determine quantitatively if the proxy represents the parent as intended (e.g., memory,
communication, computation)

— Target 8 new proxy/parent pairs per year
— Looking at both CPU and GPU-based performance

-
— \
\ EXASCALE
) COMPUTING
\ PROJECT
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Standard Performance Characterization

» Dynamic profiling to determine hot functions

» Roofline model to understand upper bound
— Cache and memory bandwidths
— FLOPS/arithmetic intensity

* For both proxy and parent and for whole execution and for each of top 10
functions (10 functions that account for largest percentage of total execution
time)

— Cache and memory bandwidths
— FLOPS/arithmetic intensity

EEEEEEEE
CCCCCCCCC
EEEEEEE



Baseline using Roofline Model

1000

® m|n|QMC 100

01
0.01
0.001
0.0001
1.0e-5
1.0e-6
1.0e-7

1.0e-8

1 Na-0
34

SdO149

1.0e-9

1.0e-8

1.0e-7

1.0e-6

1.0e-5

0.0001

0.001

0.01

50
TR A

[

FLOP/Byte (Arithmetic Intensity)

0.1

P

EXASCALE
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Profugus roof line from Brian

GFLOPs / sec

10000
2262.4 GFLOPg/sec (Maxilmum)
1000 ¢
100
lo i i
0.01 0.1 1 10

FLOPs / Byte

100

ECP
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Profugus Dynamic Profile from Brian

ProfugusMC Dynamic Profile

Misc

distance_to_boundary()

MPI_BARRIER()

pathlength()

process_boundary() process_collision()

ECP

EXASCALE
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Identifying Hardware Bottlenecks

* Drill-down on memory bounded-ness
— Implemented Intel’s Top-Down Microarchitecture Analysis (TMA) into LDMS
» Fast, flexible, and get per-process data

— Currently validating TMA methodology
* Does it really identify bottlenecks correctly?

ECP

EXASCALE
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QMCPack, NiO256 atoms on Skylake

Top-Down Analysis, Level 1
0.8
0.7
0.6

0.5

0.4 Yellow dashes are

bottleneck thresholds
0.3

0 /

0.1

0 — N

Front-End Bound Bad Speculation Backend Bound Retiring
Backend Bound Level 3: Memory Bound

0.4
0.35

0.3
0.25

0.2
0.15

0.1

0 - — —
L1bound L2 bound L3 bound DRAM bound Store bound

38

0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

0.45
04
0.35
03
025
0.2
0.15
0.1

0.05

Backend Bound, Level 2

!

Memory Bound

Core Bound

Backend Bound Level 4: DRAM Bound

I

Memory Bandwidth

Memory Latency

TMA identifies the
same bottlenecks
for miniQMC

Backend Bound Level 5: Memory LatencyBound

Local DRAM

Remote DRAM

ECP

Remote cache
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Function Drill-Down: Dynamic Profiles
« MiniQMC

MINIQMC -1 X 1 X 32 MINIQMC -1 X8 X 1

evalutate
20%

other
27% evaluated_vgh

0,
other 255

35%

evalutate_vgh
14%
ratio
5%
set
17%

evaluate_v

move evaluate
7% -

0,
moveOnSphere 12% Ve moveOnSphere

12% 13%

Instrumented these functions, currently collecting TMA and other hardware performance counters to
better understand composite behavior.

=
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GPU Characterization

* Motivation

— Large proportion of performance on exascale computers expected to come from accelerators
such as GPUs.

— Tradeoffs between performance and portability depending on GPU program model used.
— Application may have different characteristics and bottlenecks on GPU vs. CPU architectures.

» Goal is to use proxy apps to answer the following questions:
— What are the implications of GPU architecture trends for ECP applications?

— What GPU programming models will enable the best performance portability across future
accelerator architectures?

— What software optimizations are key to achieving good performance on GPU architectures?

—
/~ \
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Interaction with ECP AD Teams

Best practices for proxy app development for GPUs (Proxy App team can help as
resources allow)

— Provide proxy app configurations and inputs representative of exascale application problems
(can be scaled back to reduce runtime and number of nodes)

— Keep proxy app up-to-date with main app development
* In some cases (e.g., SW4lite, ProfugusMC), proxy app leads GPU development
— Provide feedback on Proxy App team assessment results (maybe we missed something)

— Optimize proxy app GPU implementation for new GPU architectures and features
* Most time-consuming kernels are the most important.
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Why GPU Assessment Matters

» Ask yourselves

— If a vendor uses my proxy app to help with design decisions for GPU architecture features,
will the result benefit performance of my application?

— If my proxy app is used for procurement decisions for a machine with accelerators, will the
resulting machine architecture and configuration match my application requirements?

* If you don’t have a representative GPU implementation that is agile enough to be
easily built and run (including on simulators and prototypes), your application will
not influence these decisions!
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GPU Assessment Procedure

» Similar to CPU assessment that has already started

» Steps
— Obtain code and inputs for CPU and GPU versions
— Build and run CPU and GPU versions and verify results
— Profile execution
— Collect characterization data
* Instruction mix
* Achieved cache and memory bandwidths
« Communication characteristics
— Analysis
» Compare full and proxy app characteristics
» Roofline models
+ |dentify performance and scaling bottlenecks
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SW{4lite Performance on P100 vs. V100
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SWdlite Results on Summit

Testcase __[Ngp ______[Nts______[Nodes ____|GPUs | Runtime (sec)

LOH.1-h100 1.55e7 1073 1 1 19.4
LOH.1-h100 1.55e7 1073 1 6 5.16
LOH.1-h50 1.23e8 1073 1 3 55.4
LOH.1-h50 1.23e8 1073 1 6 31.8
LOH.1-h50 1.23e8 1073 2 8 254
LOH.1-h25 9.82e8 1073 2 12 115
LOH.1-h25 9.82e8 1073 4 24 69.7
Remarks:

+ Reasonable strong scaling
* Weak scaling is not good (much worse that SW4 on Cori 2 KNL, where runtime increased 6%
going from h100 to h50 and increased 30% going from h50 to h25)
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Clustering Analysis of Proxy Representativenes
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Proxy/Parent Communication Similarity

« Communication metrics based on behavior (not MPI primitives used)

— Pairwise communication data analysis
» Point to point communication patterns (source, destination)
» Total number of messages sent for each pair
» Using CrayPat tool
— Communication vector data clustering
KB/sec - Total size of data transferred (KB) / total execution time (sec)
MPI1 KB/sec - Total size of data transferred (KB) / total time spent in MPI (sec)
Message size histogram data
Using mpiP tool

PMBS2018, “Exploring and Quantifying How Communication Behaviors in Proxies
Relate to Real Applications”
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