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Abstract—As the HPC community moves toward exascale,
understanding application behavior is more important due to the
increase in size and complexity of systems. While applications
also grow larger in size and complexity, the need for proxy
applications is crucial because of their ease of use and fast
execution. They have become an essential aid for system vendors
to evaluate new advanced architectures and for application
developers to more quickly resolve algorithm and optimization
issues. Therefore, proxies must be representative in behavior and
function of the applications they mimic. In this work, we present
a methodology to understand if a proxy represents a parent
application based on a comparison of computational kernels,
appropriate dynamic execution characteristics, and hardware
bottlenecks. Based on this method, we conclude that miniQMC
is a fairly good proxy for QMCPACK, but could be improved
based on our analysis.

Index Terms—Workload characterization; Proxy applications;
Performance evaluation; Big data

I. INTRODUCTION

Proxy applications provide a means to understand or refac-
tor a larger parent application while using a smaller, more
tractable and flexible code. They are typically developed
either to be used for programming model and algorithmic
exploration or as a co-design tool for architecture and system
development as they are designed to represent some behavioral
characteristic of the parent application such as computation,
memory behavior, or communication. In both use-cases, the
proxy must be a “good” representation of the parent. If it
is not, algorithmic and other development done in the proxy
will not result in the same behavior when implemented in
the parent. Even worse in the co-design case, a system could
be designed to resolve performance constraints that are non-
existent in the parent, resulting in unexpected, sub-optimal
system performance. Therefore, it is absolutely necessary to
determine if a proxy faithfully represents its parent application
in the context of what it was designed to represent.

Determining the representativeness of a proxy compared
to its parent can be done in several ways. It is essential to
qualitatively understand if the applications implement the same
algorithmic solvers, conditioners, data structures, etc., while
dynamic profiling can reveal which functions are primary
kernels and if kernels and functions remain the same across the
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two applications. Tools such as roofline models [1] can reveal
whether the proxy and parent are computationally and/or mem-
ory bound in a similar way. Comparison may go deeper and
proceed into collecting hardware performance counter events
and deriving metrics that can be compared between proxy
and parent. These metrics may be further analyzed through
statistical and other techniques (e.g., clustering, similarity
measures) to determine how well the proxy matches its parent.

In prior work, we explore using statistical comparison
techniques on hardware performance counter data to determine
if a proxy is representative of its parent with respect to
computation, memory, and communication behavior [2], [3].
Here we aim to use a combination of qualitative understanding
of the proxy and parent in conjunction with dynamic profiling,
roofline modeling, and qualitative comparison of quantitative
metrics derived from various hardware performance counter
data and analyses to understand representativeness. We extend
our work beyond what is traditionally collected from hardware
performance counters to include metrics that are implemented
in Intel’s Top-Down Microarchitecture Analysis (TMA) [4]
that identifies specific hardware performance bottlenecks in the
underlying processor microarchitecture. We use miniQMC and
QMCPACK as our proxy and parent application, respectively,
and present a characterization method to identify similarities
and differences in these applications at both high (kernel) and
low levels (microarchitecture) of abstraction.

II. METHODOLOGY

Here we present the method we use for this particular
case study to determine if miniQMC is representative of
its parent, QMCPACK. This method includes quantitative
measurement and comparison at both the hardware and appli-
cation/kernel level. All of the characterization uses CPU-only,
MPI+4-OpenMP implementations of both proxy and parent. The
outcome of this work is to determine if miniQMC represents
QMCPACK with respect to important performance character-
istics and understand the limitations to this representativeness,
and to identify a general method that can be applied to other
proxy/parent pairs. Our assessment methodology includes:

1) a clear qualitative comparison and description of the
proxy versus the parent with respect to primary func-
tionality,



2) dynamic profiling to understand if key kernels and
functions implementing these kernels are as expected
and consistent across the two applications,

3) roofline modeling to understand at a high-level if the
two applications are characterized by the same bot-
tlenecks (e.g., compute-bound versus memory bound,
cache bound, floating-point operations bound),

4) measurement and comparison of important metrics
(e.g.,cache bandwidths, FLOPs, instruction mix) for the
entire application execution and per-kernel,

5) identification and comparison of microarchitecture bot-
tlenecks for the whole application execution.

The bottleneck analysis is based on the Intel Top-Down
Microarchitecture Analysis. This is a hierarchical methodology
that uses a pipeline slot abstraction to identify which com-
ponents in the architecture (if any) are causing performance
bottlenecks based on cycle counts. This hierarchy is shown
in [4]. Each category in the hierarchy is associated with an
area/component in the microarchitecture that could potentially
demonstrate a hardware bottleneck. The methodology iden-
tifies bottlenecks using a predefined threshold based on an
expected number of execution cycles for each area/component
and suggested by Intel for HPC applications.

The method is hierarchical in that starting at the top, if a
bottleneck is identified, the user can choose to drill-down to
the next level of metrics to determine its cause. The top level
of the hierarchy comprises: (1) frontend bound (instruction
fetch and decode), (2) bad speculation (branching), (3) back-
end bound (memory hierarchy), (4) core bound (instruction
issue/execution), and (5) retiring (instruction retire). In our
analysis of miniQMC and QMCPACK, we primarily see issues
in the backend and core.

III. EXPERIMENTAL PLATFORM

We use QMCPACK v3.4 and miniQMC v. 0.4. We compile
both the proxy and the parent with the Intel 18.1.163 compiler,
using all default flags contained in the distribution makefile in
addition to an architecture specific flag (-xCORE-AVX512)
and a flag to force loop unrolling.

A. Computational Platforms

The Blake testbed at Sandia National Labs, NM, is an
Intel Skylake Platinum 8160 with characteristics as shown in
Table I. This architecture has 6 memory channels per socket,
with a total of eight execution units including three vector units
(two support 512-bit ops) that all do general vector ops and
FMA. Skylake supports the AVX512 ISA, and has a new core-
to-core, two-dimensional mesh memory fabric that potentially
reduces latency and increases bandwidth between cores and
memory. Key characteristics of the Intel Skylake Platinum
8160 used are shown in Table I. The characteristics with an
asterisk are noted in Intel documentation as estimates.

B. Profiling and Measurement Tools

For profiling, we use primarily HPCToolkit [S]. It is not
capable of automatically generating an execution profile, but

Component 8160

L1 data cache 32 KB, 8 way, 64 B line size per core, private

403 GB/sec max BW x

L1 instruction cache 32 KB, 8 way, 64 B line size, per core, private

L2 cache 1 MB, 16 way, 64 B line size, per core, private
134 GB/sec sustained BW
L3 cache 33 MB, 12-16 way, 64 B line size, shared, non-inclusive
Memory (per node) 192GB DDR4-2666 MHz

Cores/threads 24/48
Sockets/node 2
Total nodes 40
Interconnect Intel Omnipath

Max Memory BW 119.21 GB/sec (19.87 GB/sec single channel)

TABLE T
HARDWARE CHARACTERISTICS OF SKYLAKE PLATFORMS

we manually extract this from the function execution infor-
mation that the tool does generate. We use Intel VTune Am-
plifier [6] 2018.2.0 to generate cache-aware roofline models,
and HPCToolkit and the hardware counter sampler within
LDMS [7] (Light-Weight Distributed Monitoring System)
to collect hardware performance counter data. Within the
hardware counter sampler, we implement Intels Top-Down
Microarchitecture Analysis (TMA) to identify hardware bot-
tlenecks for whole application execution. We are working
on implementing LDMS samplers that enable us to collect
hardware counter and TMA data per function. We currently
use HPCToolkit to obtain per-function hardware performance
counter data.

IV. MINIQMC AND QMCPACK

MiniQMC is a quantum Monte Carlo code that comprises
the important computational kernels of its parent, QMCPACK,
and is intended to represent computational and memory,
but not communication behavior of QMCPACK. Quantum
Monte Carlo methods are often applied in material science
to understand the electronic structure of molecular and solid
state systems. The computational motifs of miniQMC and
QMCPACK are particle methods, dense and sparse linear
algebra, and Monte Carlo.

MiniQMC is meant to be a computational proxy, and there-
fore, implements no inter-rank communication. QMCPACK is
fully MPI parallelized and since it is Monte Carlo, we expect
a random communication pattern, which is what we observe.
Because miniQMC and QMCPACK have no similarity in
communication behavior by design, we do not include analysis
of communication similarity in this work.

A. Algorithms and Key Kernels

MiniQMC, like QMCPACK, implements a direct solve of
the Schrodinger wave equation, which provides accuracy at the
expense of computational intensity. From this wave equation,
the probability of particle position and particle energy are com-
puted. MiniQMC and QMCPACK both implement Variational
and Diffusion Monte Carlo (DMC). DMC samples the exact
wave function, while Variational Monte Carlo (VMC) uses an
approximate wave function. In this work, we focus on DMC.



A walker represents a 3D particle position, R. An ensemble
of walkers is generationally and stochastically propagated
through a defined electronic structure. Each propagation step
moves the particle through the structure using a drift-diffusion
process. The particle’s local energy is computed at each
step to determine if the particle dies, continues propagation,
or reproduces. This changing particle population potentially
creates imbalance that is addressed by periodic load balancing.

The four key kernels in both miniQMC and QMCPACK are
the following:

1) Determinant update (inverse update): Uses the Sherman-
Morrison algorithm to compute the Slater determinant.
The Slater determinant provides an accurate approxima-
tion of the wave function being solved. This kernel relies
on BLAS?2 functions and is the source of the N scaling
in the application. This is clearly seen in the dynamic
profile, presented in Section IV-CI.

2) Splines: Is invoked for every potential electron move. It
computes the 3D spline value, the gradient (4x4x4xN
stencil), and the Laplacian of electron orbitals. This
kernel is memory bandwidth limited. Its large memory
footprint makes data layout and memory hierarchy con-
siderations critical to performance.

3) Jastrow factors (1, 2, and 3-body): The Jastrow fac-
tor represents the electronic correlation beyond the
mean-field level in QMC simulations. Correlations are
decomposed into 1, 2, and 3-body terms (electron-
nucleus, electron-electron, and electron-electron-ion, re-
spectively). This is a computationally intensive kernel.

4) Distance tables: These tables hold distances between
electrons and electrons and atoms as matrices of all
pairs of particle distances. Two tables are maintained—
one for electron-electron pairs and one for electron-ion
pairs. Minimum image and periodic boundary conditions
are applied. Tables are updated after every successful
MC electron move. Algorithms implementing this kernel
have a strong sensitivity to data layout.

B. Problem Selection and Validation

MiniQMC comprises all of the key kernels that are in
QMCPACK, although their relative importance in terms of
percentage of total execution time is slightly different [8].
MiniQMC implements one walker per MPI rank and is meant
for single-node explorations only. QMCPACK is fully MPI
parallelized and is designed to take advantage of large-scale
systems. Both miniQMC and QMCPACK support OpenMP
threads, where the number of threads for a DMC calculation
should be chosen to be only slightly larger than the number of
walkers [9]. Therefore, to compare the proxy to the parent, we
chose a single-node configuration, with one OpenMP thread
per MPI rank; we chose the number of MPI ranks based on
the available socket memory.

The exascale challenge problem for QMCPACK is to sim-
ulate transition metal oxide systems of approximately 1000
atoms to 10 meV statistical accuracy with performance porta-
bility. The transition oxide of choice is nickel oxide (NiO), and

Kernel miniQMC (meas/base) QMCPACK (meas/base)

Determinant 73.9/83 71.6/82

Single-Particle Orbital (SPO) 11.5/5 11.0/6

Distance 12.8/5 12.2/6

Two Body Jastrow 1.4/2 4.52

Total % 99.6/95 99.3/96
TABLE IT

COMPARISON OF KERNEL FUNCTION TIMING AGAINST BASELINE,
MINIQMC AND QMCPACK

miniQMC | QMCPACK
Execution time (secs) 1551.45 1612.32
Executed instructions 4.73E12 2.19E12
TABLE III

EXECUTION TIME AND INSTRUCTIONS EXECUTED.

the target number of atoms is 1024. The 1024 atom problem
is extremely memory intensive and cannot practically be
executed on available contemporary systems without running
out of memory. We chose a fairly contemporary system for
our experimental platform and the largest problem that we can
execute on this system (192GB/node memory) is 256 atoms
(3072 electrons), which uses about 12GB per core. This system
has 24 cores per socket, two sockets per node, but we use only
4 cores per socket (48GB) in order to force a reasonable run
time and to ensure we execute within memory limits.

To match the 256 atom NiO problem used for QMCPACK,
for miniQMC we use the ”-g 2 2 27 flag, which is 256
atoms and 3072 electrons [10]. We also use the ”-r 0.999”
to more accurately reproduce a DMC run. For comparison of
miniQMC and QMCPACK, we use 8 ranks on a single node.

We do a high-level, order of magnitude validation to confirm
that our QMCPACK and miniQMC runs perform as expected
by reproducing a portion of the data from [8], which we call
baseline data. The data was generated on a Skylake 8160,
which is the same platform we use for our runs (although L3
cache and memory size may vary across the two systems).
The baseline and our data is the single-thread case using 3072
atoms. Note, however, that we are using this baseline as a very
rough guide. If we are within an order of magnitude of the
baseline, we conclude that our application is running correctly.
We know that the baseline data and our measured data likely
use different versions of these codes and may largely differ in
terms of kernel percentage execution times. This was the best
data available at the time for obtaining some understanding
that we were executing these applications correctly.

Table II shows results of our validation, which are the
percentages of total execution time for each of the kernels
in miniQMC and QMCPACK. Our results show about 10%
less Determinant kernel execution time, and about 5-6% more
time in SPO and Distance, and roughly the same amount of
execution time in Two Body Jastrow. The baseline data shows
4-5% of the execution time outside of the four main kernels,
while our data shows effectively all of the execution time is
accounted for by those four kernels. Overall, the execution
time percentages and the relative amount of execution time



spent in each function in our runs is within the same order
of magnitude to the baseline timings. Note that the measured
kernel times for both applications differ by a maximum of
about 3%, with the Determinant and Two Body Jastrow kernels
showing the largest percentage of execution time difference
between miniQMC and QMCPACK.

Table III shows the execution time and the total number
of instructions executed for each application. The execution
time differs by about 4%. The number of instructions executed
differs by about 74%, with miniQMC executing a significantly
larger number of instructions. These are actual instructions
retired, so does not account for instructions that are executed
speculatively. Data presented in Section IV-C3 indicates a
higher percentage of load instructions and a much lower per-
centage of vectorization for miniQMC. This could be why we
see such a difference in the number of instructions executed.
QMCPACK is doing fewer loads and fewer FP instructions, but
they operate on larger data since they are vector instructions.

C. Results and Analysis

Here we present our data and analysis for comparing
miniQMC and QMCPACK. We examine the results from
each analysis, then make final observations with respect to
similarity and representativeness in Section IV-E.

1) Dynamic Profiling: Table IV shows the HPCToolkit-
generated dynamic profiles of miniQMC and QMCPACK,
respectively, and also shows which functions implement each
of the key kernels. The profiles appear to be fairly similar.
In terms of percentages of execution time, the developers of
miniQMC do state that miniQMC implements the key kernels
of QMCPACK, but the relative percentages of execution time
may vary, and looking at the table, this is absolutely true.
Other observations include:

o The Determinant kernel comprises the same functions,
except that QMCPACK has an additional function, eval-
uatelog.

e SPO has no functions in common between miniQMC and
QMCPACK.

o The Distance kernel has two of three functions in com-
mon, with the third function only appearing in the profile
of miniQMC (namely, ParticleSet::setActive).

o In the Two Body Jastrow kernel, there is some similarity,
but there are more functions in QMCPACK.

Adding up the contributions of each of the kernels for
both miniQMC and QMCPACK as shown in Table II, we see
that execution time contributions of the key kernels are fairly
similar with the exception of Two Body Jastrow, which shows
the largest difference in total execution time. To summarize,
the kernel execution times are similar, but the functions
comprising the kernels are different as seen in Table IV. This
indicates that we should examine per-kernel data rather than
per-function data for lower-level similarity.

2) Roofline Model: We use a cache-aware roofline model
generated by the Intel Advisor tool to get a general under-
standing of the behavior of both the proxy and parent and to
determine at a high level if that behavior is similar. Figure 1

shows the roofline models of miniQMC and QMCPACK for
a single core and single thread execution. The tool generates
the values on the roofline curves by running a suite of bench-
marks and measuring sustained cache/memory bandwidths and
FLOPs rates on the particular system. From the data that we do
have on sustained bandwidths (Table I), these measurements
look reasonable on these plots. From the executing application,
the tool measures cache/memory bandwidths and FLOPs rates
for each function or loop and places these with respect to the
roofline as a single dot. The larger the dot means that that
function or loop accounts for a larger percentage of the total
execution time, indicating greater opportunity for impacting
performance if optimized. Dot size can be custom color-
coded; we chose red-yellow-green for largest down to smallest
percentage of execution time loops or functions. To determine
how each function or function loop (dot) is bound, draw a
straight line up from the particular function and the first line
it hits determines what it’s bound by.

In Figure 1 we only show the functions or loops that
benefit most from optimization as determined by the roofline
tool (i.e., only red (largest) and yellow dots, no green dots
(smallest) are shown). These correlate with kernel functions
that account for larger percentages of the execution time as
shown in Table IV. In both roofline plots, the MKL BLAS
loops appear in the same respective place. The leftmost red
dots are bound by scalar add GFLOPs; the rightmost red
dots are bound by L3 bandwidth and scalar add GFLOPs.
Assuming that these BLAS operations are matrix-matrix, they
should be compute bound. MKL is a top function in terms of
total execution time and it is implemented in the Determinant
kernel, which is known to be computationally bound. Looking
at the functions represented by the yellow dots, we see that
QMCPACK’s roofline has two additional functions on the plot
compared to miniQMC'’s roofline. One of these is associated
with the Distance kernel and the other with the Two Body
Jastrow kernel (i.e., evaluateLogandStore). These may appear
in QMCPACK’s roofline but not in miniQMC’s because of
the difference in percent execution time — these account for a
smaller amount of time in miniQMC. Of the two yellow-dot
functions that the plots have in common, the spline function
that is part of the SPO kernel is computationally bound as
expected by DP (double-precision) Vector FMA (floating-point
multiply-add) GFLOPs in both cases. The spline function in
the solve loop is bound differently in the two applications. In
QMCPACK, it is bound by L3 bandwidth and in miniQMC,
this function is bound by DP vector add GFLOPs. This is a
discrepancy that warrants further investigation.

In summary, the rooflines have similar functions that are
mostly bound by the same hardware components and QMC-
PACK’s extra functions on the roofline are understandable. The
function boundedness seems to mostly match the expectations
of how the four key kernels are bound.

3) Using Hardware Performance Counters to Understand
Behavior Similarity: We begin this analysis by examining sev-
eral key metrics in our LDMS hardware performance counter
sampler that help in understanding differences and similarities



Kernel miniQMC % Time QMCPACK % Time

Determinant DiracDeterminant::acceptMove 57.8 DiracDeterminantBase::acceptMove 493
DiracDeterminant::ratioGrad 6.2 DiracDeterminantBase::ratioGrad 7.7
MKL 52 DiracDeterminantBase::ratio 23
DiracDeterminant::ratio 4.7 MKL 10.0

DiracDeterminantBase::evaluateLog 2.3

Single-Particle | einspline_spo::MultiBspline::evaluate_vgh 9.3 SPOSetBuilderFactory::createSPOSet 11.0

Orbital (SPO) einspline_spo::MultiBspline::evaluate_v 1.2
einspline_spo::MultiBspline::set 1.0

Distance ParticleSet::makeMove AndCheck 4.8 ParticleSet::makeMoveOnSphere 11.2
ParticleSet::setActive 4.8 ParticleSet::makeMove AndCheck 1.0
DistanceTableAA::makeMoveOnSphere 3.2

Two Body TwoBodyJastrowOrbital::BsplineFunctor::acceptMove | 1.4 TwoBodyJastrowOrbital::BsplineFunctor::ratio 4.0

Jastrow OneBodyJastrowOrbital::BsplineFunctor::ratioGrad | 0.5

TABLE TV

KERNEL FUNCTION PROFILES.
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Fig. 1. QMCPACK roofline (left) and miniQMC roofline (right)

in proxy/parent performance. These metric definitions are
taken largely from the Likwid [11] performance tool, with
some metrics based on our own analysis. We include here only
the metrics that show distinct behavior between miniQMC
and QMCPACK. All metrics are an average per-core and are
derived from events measured during the whole execution of
each application. Each process executes on a single core and
the deviation in results between processes is within 5% or less.

We start by looking at whole-execution throughput shown
on the left in Figure 2. MiniQMC has smaller CPI (cycles
per instruction) and CPU (cycles per micro-op), meaning a
higher throughput than QMCPACK. Because their dynamic
profiles are not very similar on a per-function basis, this is
not surprising. The per-kernel throughput is shown in the
figure on the right. The largest difference between miniQMC
and QMCPACK is in the Jastrow kernel, which exhibits no
function similarity (Table IV). The next largest difference is
seen in the SPO kernel, again, where no function similarity
is seen in the profile. Ideal CPI for this architecture is 0.17
(i.e., issues up to 6 instructions per cycle), so both applications
are significantly higher than ideal (lower is better), indicating
some stall behavior somewhere in the pipeline.

Figure 3 shows the branch behavior of miniQMC and
QMCPACK. Looking at the whole execution on the left,
QMCPACK does more frequent branching and has a much
lower branch misprediction rate than miniQMC. MiniQMC

Cache MPKI LID L2 L3

miniQMC - Determinant 3.44 2.32 1.3

QMCPACK - Determinant | 87.42 | 0.04 | 11.75

miniQMC - Jastrow 1.69 1.59 0.69

QMCPACK - Jastrow 18.81 | 0.97 2.14
TABLE V

CACHE MISSES PER THOUSAND INSTRUCTIONS (MPKI)

implements only one walker, so does not have an inner loop
that iterates over the walkers as QMCPACK does. This may
account for some of the differing branch behavior since this
walker loop is implemented within the main computational
loop. To fully understand the difference in behavior, we need
to look more deeply into each key kernel. Figure 3 on the right
indicates that the largest differences in branches per instruction
between miniQMC and QMCPACK come from the Jastrow
and SPO kernels. The misses per branch metric is showing
the largest differences in the Distance and Jastrow kernels.
Cache behavior in terms of misses per thousand instructions
(MPKI) and cache bandwidths also show large differences
between miniQMC and QMCPACK as seen in Table V.
We only include kernels with large differences and where
the magnitude of MPKI is greater than one. Looking at
this data, we see that all of these MPKIs are of relatively
small magnitude, with perhaps the exception of QMCPACK
Determinant L1 data cache. The largest differences between
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Rate Ratio
Cache Bandwidth (GB/sec) | L1L2 Total | L1L2 Load | LIL2 Evict
miniQMC 2.6 1.98 0.49
QMCPACK 30.0 16.45 13.48
Cache Bandwidth (GB/sec) | L2L3 Total | L2L3 Load | L2L3 Evict
miniQMC 2.57 1.92 0.65
QMCPACK 14.08 5.38 8.7
TABLE VI

Determinant KERNEL CACHE BANDWIDTHS

miniQMC and QMCPACK are in the Determinant and Jastrow
kernels. Perhaps these two functions in the two applications
implement/operate on different data structures with different
data layouts. The working set size, although the input data is
supposed to be equivalent, may be much larger in QMCPACK.
Detailed code inspection is required and remains for future
work. This difference in MPKI may help explain the low
throughput of QMCPACK relative to miniQMC.

Cache bandwidth data again shows the Determinant kernel
being an outlier, which corresponds to cache MPKI. All of
the other kernels show such low cache bandwidth utilization
that we do not include their data here. The Determinant kernel
of QMCPACK has relatively high bandwidth usage primarily
between the L1 and L2 cache, but does not exceed bandwidth
limits. Note that this is per-process (per-core) bandwidth
data. According to [12], sustainable per-core read/write cache
bandwidth between L1 and L2 is around 60-80/20—40 GB/sec
per-core for our platform. The range accounts for the data size,
ranging from small to large. [12] also reports sustained per-
core read/write bandwidth between L2 and L3 for our platform
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as approximately 30-70/18-22 GB/sec.

Note that we did use performance counter events to measure
stall activity due to cache and memory behavior. The Deter-
minant kernel in QMCPACK exhibits the largest percentage
of stall cycles due to the cache/memory subsystem, with about
40% of total cycles due to L1D pending misses and about 30%
from L2 pending misses and memory accesses. This supports
the observed data in Tables V and VI

Looking at the instruction mix in Figure 4 we see that the
two applications are similar except in the percentage of loads.
MiniQMC executes significantly more load instructions than
does QMCPACK. This could be because QMCPACK does
much more AVX512 than miniQMC as shown in Table VII.
AVX512 operates on wide data words, so the actual load
instructions issued to memory fetch wider words, meaning
fewer overall memory instructions issued. Because miniQMC



FP Breakdown miniQMC | QMCPACK
(% of total FP)
AVX512 39 11.5
AVX2 0.02 0.04
SSE 0.0 0.38
Scalar 15.0 6.26
Vectorization Rates miniQMC | QMCPACK
(% of total by precision)
SP 0.0 0.0
DP 20.98 65.49
TABLE VII

FP BREAKDOWN AND VECTORIZATION RATES

does relatively smaller number of AVXS512 instructions, its
scalar FP instruction percentage is large.

Table VII shows the vectorization rates for single-precision
and double-precision FP instructions. All of the vectorization
for both applications is done on double-precision FP instruc-
tions. This is probably because the data in the main kernels
of both apps is double- rather than single-precision FP. Note
the large difference between miniQMC and QMCPACK in
AVX512 vectorization. Comparatively, miniQMC does mini-
mal vectorization.

The takeaway from this kernel data is that we clearly see
the function profile differences in the Jastrow and SPO kernels
for various non-cache-related metrics. However, we also see
large differences in cache and memory-related metrics in the
Determinant kernel, which may indicate a mis-match in data
layout, data structures, and/or working set size between the
two applications, in spite of executing the same problem.
Together, these noted differences could generate the overall
execution differences.

D. Identifying Hardware-Level Bottlenecks using TMA

Figure 5 shows TMA for miniQMC and QMCPACK, start-
ing at the top level. At Level 1, we see that both applications
are backend bound, meaning there is a performance issue in the
microarchitecture backend, which indicates that micro-ops are
not being delivered to the issue pipe due to lack of resources
for accepting them in the backend. This could be either
because of execution stalls due to the memory subsystem
(memory bound) or stalls due to sub-optimal execution port
utilization (core bound). Note that miniQMC is also bound on
bad speculation.

Drilling further down the backend hierarchy, we see that
at level 2 both applications again exhibit the same behavior
in that they are both memory bound and slightly core bound.
At the third level of the backend bound hierarchy, execution
stalls are occurring due to DRAM issues for both applications.
The fourth level shows that the DRAM causes execution stalls
due to both its bandwidth (for miniQMC and QMCPACK) and
its latency (QMCPACK). QMCPACK has more complexity in
function than does miniQMC. So it being also latency bound
where miniQMC is not is not necessarily surprising. Although
not shown in the figure, drilling down on the memory latency
bottleneck shows that the latency of local DRAM accesses is
the root cause of the execution stalls in the backend pipeline

of this architecture. The takeaway is that both the proxy and
the parent appear to be identifying performance degradation
due to the same hardware resources.

If we drill down on the core bound bottleneck in Figure 6,
we see that both applications show an execution port utilization
bottleneck. This indicates that port over-utilization could be
causing excessive execution stalls in the backend. However,
drilling down further (not shown in the figure), we find that
multiple execution ports are not simultaneously over-utilized.
Examining the performance counter metrics we collect in
addition to TMA, we did see port utilization of port O (executes
integer, branch, and vector instructions) reach between 60 -
70% for some kernels in both applications. Ports are associated
with queues and from queueing theory, a rule of thumb is that
utilization around 70% could cause stalling. We wonder if the
core boundedness identified by TMA could be indicating a
problem, but the HPC threshold is actually too low to flag it
in the methodology. We are currently exploring these sorts of
issues in the methodology.

Pertaining to miniQMC’s bad speculation bottleneck (Fig-
ure 5), drilling down to level 2 metrics (not shown), branch
mispredicts exceed the threshold, identifying a bottleneck.
Cycles are lost fetching the mispredicted execution path and
from the subsequent pipeline flush. Why this happens in
miniQMC and not in QMCPACK is not completely clear.
miniQMC has much lower number of branches per instruction
compared to QMCPACK and also has comparatively much
larger basic blocks. This seems like these characteristics would
lead to better branch prediction rates in miniQMC rather than
worse. It could be that since miniQMC only encapsulates the
key kernels in QMCPACK that we see only that behavior
and there is enough additional code in QMCPACK with very
different behavior from the kernels that dominates the overall
branching behavior in QMCPACK. Further investigation is
needed to more accurately identify this observed difference
in branching behavior. We are presently analyzing per kernel
TMA data to help determine this.

E. Is miniQMC a Good Proxy for QMCPACK?

Determining whether or not a proxy is a good representation
of a parent application is somewhat ambiguous and really
depends on how the proxy will be used. Therefore, we
conclude that the best answer to whether or not a proxy is
an imposter is to not answer the question directly, but rather
provide information on key characteristics and behaviors and
a guide to aid users in their decision as to whether or not to
use a proxy in lieu of its parent.

Our conclusion is that miniQMC is a good proxy for
QMCPACK for certain cases, but does not faithfully model
QMCPACK in every aspect. At the whole-application level,
hardware bottlenecks and kernel-only execution profiles are
essentially the same. When looking at the entire execu-
tion, these applications differ in key metrics pertaining to
throughput, branch and cache behavior, instruction mix, and
vectorization. The per-kernel behavior shows these differences
coming primarily from the Determinant and Jastrow kernels.
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Characteristic Good Proxy? Characteristic Good Proxy? Characteristic Good Proxy?
Kernel Execution Profile Yellow Vectorization Yellow

Front-end Bound Branch/insn Insn Mix
Bad Speculation Branch miss/insn Yellow L1D/L2/L3 Cache MPKI
Back-end Bound Branch miss/branch L1L2All BW
Retiring L2L3Total& Evict BW L2L3Load BW Yellow

|| CPU Yellow [[[ Roofline

TABLE VIIT

SUMMARY OF MINIQMC/QMCPACK REPRESENTATIVENESS. GREEN INDICATES REPRESENTATIVE, YELLOW IS PARTIALLY REPRESENTATIVE, RED
DENOTES NOT REPRESENTATIVE. LEVEL THRESHOLDS ARE AN ORDER OF MAGNITUDE DIFFERENCE IN THE PARTICULAR CHARACTERISTIC FOR RED,
LESS THAN ORDER OF MAGNITUDE BUT STILL A DIFFERENCE WITHIN REASONABLE MEASUREMENT TOLERANCE FOR YELLOW, GREEN IS THE SAME.
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We summarize similarities and differences between miniQMC
and QMCPACK in Table VIII. All of the Top-Down Analysis
characteristics are green because the hardware bottlenecks
identified are the same in both applications. The kernel execu-
tion profile is labeled yellow because there is an approximate
3% difference in execution percentage in the the Two-Body
Jastrow kernel. Cache MPKI is red because there is an order of
magnitude difference between miniQMC and QMCPACK for
all cache levels. We realize the level thresholds are somewhat
subjectively defined and it probably depends on the individual

characteristic. However, the chart is a guide and we encourage
users to assess specific quantitative differences in individual
characteristics in making their use decision.

The methodology we follow is useful for identifying proxy
representativeness of its parent. We examine the applications
from both the software (kernels and kernel functions) and the
hardware perspective, which did provide useful information.
This methodology can and will be applied in the future to
study additional proxy/parent pairs.
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