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Abstract—Proxy applications are a simplified means for stake-
holders to evaluate how both hardware and software stacks might
perform on the class of real applications that they are meant to
model. However, characterizing the relationship between them
and their behavior is not an easy task. We present a data-driven
methodology for characterizing the relationship between real
and proxy applications based on collecting runtime data from
both and then using data analytics to find their correspondence
and divergence. We use new capabilities for application-level
monitoring within LDMS (Lightweight Distributed Monitoring
System) to capture hardware performance counter and MPI-
related data. To demonstrate the utility of this methodology, we
present experimental evidence from two system platforms, using
four proxy applications from the current ECP Proxy Application
Suite and their corresponding parent applications (in the ECP
application portfolio). Results show that each proxy analyzed
is representative of its parent with respect to computation
and memory behavior. We also analyze communication patterns
separately using mpiP data and show that communication for
these four proxy/parent pairs is also similar.

Index Terms—Workload characterization; Proxy applications;
Performance evaluation; Big data

I. INTRODUCTION

Proxy applications, sometimes called mini-apps or rep-
resentative applications, are relatively small programs that
attempt to capture some fundamental aspects of a real, and
much larger, application or class of applications. Being much
smaller, proxy apps are designed to be easily built, installed,
and executed. They typically have few build constraints and
dependencies, simple input specifications, and are thus usable
with little human overhead or time commitment. Their purpose
is to provide an easy-to-use-mechanism to evaluate system
performance, find hardware bottlenecks, perform algorithmic,
parallel, or system design exploration, and in general gain
an understanding of how a particular class of applications
might perform on an HPC system, and how to best design
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and configure both the system and the application to maximize
performance.

Underlying all this is the assumption that the proxy app
does indeed capture the essence(s) of the real application.
Answering the question of the validity of this assumption has
long been a relevant issue, not just for proxy apps but for
benchmark suites and other forms of indirect assessment of
system performance. As applications continue to be created
and evolved, proxy apps do as well, and the systems they run
on continue to change; thus, a usable, continuous methodol-
ogy for assessing the correspondence of proxy apps to real
applications would and will be beneficial to the community.

Without a methodology or support framework, a one-off
attempt at assessing the relationship between a proxy app and
a real application might involve by-hand instrumentation of
the real application in order to gather some statistics that are
similar to what the proxy app gathers (proxies typically are
built to output data regarding their own performance), and
then use some appropriate data analytics to compare the two
data sets. This would obviously be an intensive effort that
many would not have the expertise to perform—only someone
very familiar with the large and complex codebase of the
real application would be able to do this. Fairly recent work
appears to have done just this [1], though the same group also
generalizes their work [2].

Moreover, it is not clear that this kind of comparison is nec-
essarily appropriate. For example, the proxy app CoMD, which
models molecular dynamics computation, outputs among
many other things an “average atom update rate” and an
“average atom rate.” But should this rate be compared to what
a real MD application achieves? Should the more complete
and complex codebase of the real application, which may have
conditions and constraints that were ignored in the simplified
proxy app, be expected to achieve a similar atom update rate
on the same system? If not, how different should they be?



How would we know if our real MD application is achieving
comparable performance to what CoMD achieved?

Given these difficulties, it is not surprising then that very
recent work has somewhat sidestepped the issue; in one
example, extracting kernels from the real apps instead of
comparing to proxy apps [3], and in another first comparing
proxy apps to benchmarks as an intermediate step towards
comparing to real applications [4].

In this paper we propose a methodology that evaluates the
performance of both the real and proxy applications at a level
below that of their domain-specific performance: that of how
they exercise the hardware. This avoids the issue of domain-
specific metrics and targets the real question of performance
and correspondence, which is: do they utilize and exercise the
HPC system in similar ways? While this cannot be made too
simplistic, such as trying to boil it down to a single metric
like instructions per cycle, a holistic view of how the system
is utilized should provide a solid foundation for comparing the
proxy app to the real application.

II. METHODOLOGY

Overall the basis of our methodology is to characterize a
run of an application, either real or proxy, by a vector of &
values, and then perform clustering and other similarity char-
acterizations of the vectors. We hypothesize several outcomes
of this:

o runs of an application will have similar vectors;

« runs of proxy applications should have vectors similar to

the vectors of the real applications they represent; and

« runs of different applications should have vectors that are

different.
In the above, we purposely do not rigorously define similar
and different, as the paper explores and answers these below.
We also define k below.

For a scientific application that runs on HPC platforms,
its performance will depend on how it utilizes the following
resource domains:

« Basic node resources (processors and memory);

o Accelerator resources (e.g., GPUs);

« Communication resources (node interconnect); and

o Storage I/O resources (file systems).

Not only will its performance depend on using these resources,
it can also be characterized by how it uses these resources.
For the purposes of this paper, we only consider the basic
node resources and the communication resources. Most proxy
applications ignore the issue of filesystem usage, even though
this can be critical, and the initial set of proxy applications we
are investigating do not use accelerators. Both of these areas
are important areas of future work, and we believe they can
be addressed similarly to how we approach the two resource
domains that we use. We also ignore the issue of shared
resource contention (e.g., interconnect contention), and instead
assume that for data-collection runs this issue is controlled and
alleviated.

For each resource domain r, a set of metrics M, can
be defined that characterize its usage. These metrics should

be generic and not change from application to application,
or even platform to platform, if a general methodology is
to be created. The metrics also have to be relatively easily
collectable, as the instantiation of our methodology should
not be burdensome or depend on many hard-to-use tools or
custom configurations. Collecting the data should also not
involve high-overhead, high-variance instrumentation costs.
For example, tools such as Pin [5] can provide extremely
detailed data without internally instrumenting applications, but
the overhead can be extremely high and vary by orders of
magnitude, making time-based data comparison hard. These
constraints lead us to currently avoid anything that might
involve internal application instrumentation or high-overhead
invasive instrumentation, although in future work the use of
both will be addressed.

For the basic node resource domain bn (processors and
memory), we take advantage of the ubiquitous hardware
counters that are available. While each hardware platform can
have some set of unique counters, the most basic counters,
such as instructions, CPU, and memory activity, are available
on essentially every platform.

The metric set My, we choose for the basic node domain
is:

1) IPC, Instructions per cycle

2) UIPC, Micro-ops per cycle (Intel/AMD platforms only)

3) L1, L2, L3 miss rate: uses the total number of load
instructions as the denominator; number of misses to a
particular cache level as the numerator.

4) L1, L2, L3 miss ratio: uses the number of accesses to
the particular cache level as the denominator; number of
misses to a particular cache level as the numerator.

5) L1 to/from L2 bandwidth

6) L2 to/from L3 bandwidth

7) Instruction mix: Floating point, load, store, branch, and
other (mostly integer) instructions. We compute each
instruction category as a percentage of the total instruc-
tions committed.

8) Floating-point operations per second (FLOPS): uses
subcategories of the FP instruction mix computed above
to compute FLOPS for various categories of instruction
types. This is not available on all platforms.

Note that although L3 to/from DRAM bandwidth is typically
a measurable quantity, our systems are such that we can not
currently measure this. This will be addressed and hopefully
changed in the future.

For the communication resource domain cm, network in-
terface cards often also have internal counters that can be
accessed, though these are much less standard and less easily
accessed than the CPU hardware counters. Operating systems
often have metrics available, such as the /proc/net data avail-
able under Linux, but these can also be different for different
network types. As these get easier to use this domain could po-
tentially move towards using metrics based on these counters
and data. For this paper, since we are using real and proxy
applications that all use MPI, we use the mpiP lightweight
profiling library [6] to collect basic communication metrics



TABLE I: Most Significant mpiP Per-Routine Raw Metrics

Metric type Description Routines for
Apptime_% % of total send, isend, recv, irecv,
application time sendrecv, allreduce, bcast,
wait, waitall, barrier
MPI_% % of total send, isend, recv, irecv,
MPI time sendrecv, allreduce, bcast,
wait, waitall, barrier
Count/Time total calls / send, isend, recv, irecv,
application time sendrecv, allreduce, bcast,
wait, waitall, barrier
AvgByte/Time | avg bytes per call / | send, isend, recv, irecv,
application time sendrecv, allreduce, bcast
Simplified/Reduced mpiP Metrics
all_send = send + isend
all_recv = recv + irecv
all_multi = bcast + sendrecv + allreduce
all_wait = wait + waitall + barrier

for our applications. MpiP collects statistical information about
MPI functions (per call site) and produces a report at the end
of the application’s execution. In this work we aggregate the
data for the same MPI routine across all call sites and then
compute the metrics as shown in Table I. The functions listed
there are the only MPI functions with significant usage across
our suite of applications.

Since different applications use different MPI functions,
many of the collected metrics in Table I are zero. Further, some
proxy/parent applications do not use the same MPI routines,
and even use different types of communication primitives
(collectives versus peer-to-peer). To correct for this disparity,
we reduce and simplify the mpiP data by combining data from
categorically similar MPI functions into a generic category,
shown at the bottom of the table. Our four categories are: send,
receive, multi-way communication, and wait. These categories
reduce the mpiP metrics into more consistent category metrics
across all of the applications.

For each metric in each domain, then, we collect it for
each process (MPI rank), for each run of each application.
Although we run each application, both parent and proxy, over
a variety of configurations (e.g., number of nodes; number of
cores/node), we choose one configuration and size for data
analysis since we are trying to understand similarity under
equivalent conditions for both proxy and parent application.
For each configuration and for each application, we collect
data for five distinct runs. Each run’s data is kept independent
of other runs.

This data then has, for each domain, | M| * N, data values,
where N, is the number of processes for that run. In an effort
to reduce the total data size, we compute the mean, variance,
and standard deviation across the metric set for each of the
N, processes and found the variance to be very small (close
to zero), excluding the rank O process. Rank O variance is
large relative to the other processes because it is typically
responsible for initiating communication and gathering results
amongst processes for the final computation. Therefore, we
simplify the data analysis and reduce the data by only using
that from process 0 and randomly choosing 7 other processes,

thus fixing IV, = 8 for any size of runs. Future work can
explore the benefit of other mechanisms of either sampling or
averaging per-process data to make a uniform data set.

Each domain (node and communication) is characterized
by a k-vector of metric data, with each run being a data
sample. Clustering algorithms are sensitive to large dimen-
sionality data; principal component analysis (PCA) reduces
the dimensionality of the data input. We use PCA per domain
to extract out the top p principal components, and use their
formulae to reduce each data sample (run) to p values, which
we represent as a p-length (p < k) vector characterizing each
run. Note that we use two p-vectors, one each for the node and
communication domains (see Section IV for an explanation).
Based on initial experimentation, in this paper we chose to use
between 5 and 6 PC values (depending on platform) for the
node domain, and only 2 PCs for the communication domain
(see Section IV for an explanation). The number of PCs chosen
for the domains does not need to be equal, but even with data
from all four domains, p should probably be kept at less than
10 to avoid high-dimension clustering issues.

We use hierarchical clustering [7] to understand similarity
between proxy/parent pairs. We use the elbow method [8]
for hierarchical clustering to determine the optimal number
of clusters for the hierarchical clustering algorithm. Our hy-
potheses expect that proxy apps cluster with the real apps that
they represent, and that the real apps do not cluster together.

III. EXPERIMENTAL PLATFORM

For this work, we use two Intel-based hardware platforms:
Haswell (Xeon E5-2698 v3) and Broadwell (Xeon E5-2695
v4). While we realize these are very similar platforms, they
are very common and heavily used in the DOE complex. We
desire to extend this methodology to IBM POWER, GPU,
and ARM platforms. However, doing so is non-trivial in
terms of mapping metrics to events on these platforms and
integrating this into our LDMS infrastructure. To include
GPUs requires a new LDMS sampler which takes significant
effort to develop and to officially integrate into an LDMS
distribution. Extension to accelerators and additional platforms
will be done in future work.

We perform data collection and use our clustering model
to understand similarity of the proxy/parent pairs individually
on both Intel architectures, and we also combine the data
from both architectures to understand how the behavior and
similarity of the proxy/parent pairs changes (or remains the
same) with the different architectures. Table II presents the ar-
chitecture details of these two platforms. Although the Haswell
platform is very common, it does have known issues with
its performance monitoring unit (PMU) [9], [10], [11]. We
are aware of these problems and address this when reporting
results in Section IV. In Broadwell, these PMU issues have
been addressed and corrected.

We use the Intel 18 compiler for all proxy/parent pairs;
compiler flags are kept as consistent as possible across each
proxy/parent pair and we replicate the compiler flags that are
present in the distribution build files as close as possible.



TABLE II: Hardware Characteristics of Haswell and Broad-
well Platforms

Component Haswell Broadwell

L1 data cache 32 KB, 8 way, 64 sets, same

(per core) 64 B line size

L1 instr. cache 32 KB, 8 way, 64 sets, same

(per core) 64 B line size same

L2 cache 256 kB, 8 way, 512 sets | same

(per core) 64 B line size

L3 cache 45 MB, 12-16 way, same except

(shared) 64 B line size 16-20 way

Memory 128 GB same except

(per node) DDR4-2133 MHz DDR4-2400MHz

Cores/threads 16/32 18/36

Sockets/node 2 2

Total nodes 32 1122

Interconnect Mellanox FDR Intel OPA and
Infiniband Mellanox ConnectX4

Max Memory BW | 68 GB/sec 76.8 GB/sec

As mentioned previously, we execute each proxy and appli-
cation in several different scaling configurations, but always
pin only one process per core. We report data only for a single
configuration per application, each of which uses 128 MPI
ranks distributed across 8 nodes, using 16 cores per node.

A. Data Collection Tools

We use LDMS (Light-weight Distributed Metric Sys-
tem) [12] to obtain the node domain data from which the
metrics are derived. LDMS is a low-overhead, whole-system
tool that enables scalable monitoring of large-scale computer
systems and applications. It is comprised of a monitoring core
and a collection of plugin samplers, each of which is designed
to measure a specific component or behavior of the system or
application. LDMS takes advantage of RDMA (remote direct
memory access), a capability on many network interfaces
for directly accessing a designated portion of memory and
delivering its contents across the network, without the sending
node being interrupted at the processor or O/S level. This is
an ideal capability for HPC monitoring purposes since the
application can continue execution while the locally created
monitoring data is delivered off-node using RDMA.

An LDMS sampler is responsible for collecting a particular
metric. At a configured sampling rate the LDMS daemon
notifies the sampler to update its metric with the most recent
measurement sample. LDMS samplers exist that measure a
variety of domains, including:

1) Network-related information: congestion, delivered
bandwidth (total), operating system traffic bandwidth,
average packet size, and link status

2) Shared file system information (e.g., Lustre): open,
closes, reads, writes

3) Memory related information: current free, active

4) CPU information: utilization (user, sys, idle, wait)

5) MPI information: all mpiP metrics (Section II)

6) PAPI events: hardware event counters that the PAPI
(Performance Application Programming Interface) [13]
interface can access.

In this work, we use the PAPI sampler only. Although the
sampler to collect MPI information exists, we were unable
to use it on our chosen platforms; therefore, to collect MPI
communication information, we use the mpiP library directly.

B. Proxy and Parent Applications

This work is done as part of the DOE Exascale Computing
Project (ECP) [14]. Therefore, we use applications that are
being used in ECP Application Development [15] projects and
use proxy applications that are in the current ECP Proxy App
Suite 1.0 [16]. For this work, we chose the following four ECP
proxy/parent application pairs:

o SWdlite and SW4 (seismic modeling)

o Nekbone and Nek5000 (thermal transport)

e SWFFT and HACC (cosmology/FFT)

¢ ExaMiniMD and LAMMPS (molecular dynamics)

We also use the Graph500 benchmark in our experimenta-
tion (on one platform only) as a means to help validate the
methodology. Graph500 [17] is a data intensive benchmark
that represents the analytics problem space. It first constructs
an undirected graph, then performs either breadth-first search
(BES) or shortest path algorithms on the graph and times these
kernels. We use BFS with R-MAT scale 24 input for this work.
We expect the measured characteristics of Graph500 to be
very different than the other proxy/parent pairs, since it is an
analytics benchmark rather than a scientific computation-based
application. Therefore, we also expect Graph500 not to cluster
with other proxies or parents and to exhibit more dissimilarity
with respect to the other proxy/parent clusters.

SW4 [18] is a seismic modeling code that supports a fully
3-D heterogeneous material model that can be specified in
several formats. It uses a curvilinear mesh near the free
surface to honor the free surface boundary condition on a
realistic topography. SW4 solves the seismic wave equations
in Cartesian coordinates and is, therefore, appropriate for local
and regional simulations, where the curvature of the earth can
be neglected. Locations can be specified directly in Cartesian
coordinates, or through geographic (latitude, longitude) co-
ordinates. SW4lite [19] is a bare bones version of the SW4
that is intended for testing performance optimization of key
numerical kernels, particularly with respect to memory layout
and threading. However, it is intended to be representative
of the computation, communication, and memory behavior of
Sw4.

Nek5000 [20], [21] is a spectral element code designed for
large eddy simulation (LES) and direct numerical simulation
(DNS) of turbulence in complex domains. It simulates thermal
transport on a full range of scales set by the geometry
encountered within a reactor. Nek5000 has a broad range of
applications including vascular flow, ocean modeling, combus-
tion, heat transfer enhancement, stability analysis and MHD
(magnetohydrodynamic) flows. Nekbone [22] implements the
computationally intensive linear solvers that account for a
large percentage of the Nek5000 run time, as well as the com-
munication costs required for nearest-neighbor data exchanges
and vector reductions. The Nekbone kernel is embedded in a



TABLE III: Proxy/Parent version information

Proxy Version Parent Version
SWdlite 2.0 Sw4 2.0
Nekbone 3.1 Nek5000 17
SWFFT 1.0 HACC 1.0
ExaMiniMD 1.0 LAMMPS | 17 Aug 2017

conjugate gradient iteration to solve the 3D Poisson equation.
Preconditioning is either a simple diagonal scaling (simpler
than Nek5000) or a spectral element multigrid on a block
or linear geometry which is more similar to the multigrid
structure found in Nek5000.

The Hardware Accelerated Cosmology Code (HACC)
framework [23] uses N-body techniques to simulate the forma-
tion of structure in collisionless fluids under the influence of
gravity in an expanding universe. It simulates the evolution
of the Universe from its early times to today to advance
our understanding of dark energy and dark matter, the two
components that make up 95% of our Universe. HACC im-
plements three phases in it computation: short force evaluation
that includes computation and a tree-walk phase, and the
long range computations that implements a spectral Poisson
solver with an underlying 3D FFT (domain decomposes to
2D). SWFFT [24] is the 3D FFT that is implemented in
HACC. Since this FFT accounts for a large portion of the
HACC execution time, SWFFT serves as a proxy for HACC.
SWEFFT replicates the transform and is representative of the
computation and communication involved.

LAMMPS (Large-scale Atomic/Molecular Massively Par-
allel Simulator) [25] is a classical molecular dynamics code
that implements potentials for solid-state materials (metals,
semiconductors), soft matter (biomolecules, polymers), and
coarse-grained or mesoscopic systems. It can be used to model
atoms or, more generically, as a parallel particle simulator
at the atomic, meso, or continuum scale. Like LAMMPS,
ExaMiniMD [26], which is a proxy for LAMMPS, uses spatial
domain decomposition. But compared to LAMMPS, ExaMin-
iMD’s feature set is extremely limited, and only three types of
interactions (Lennard-Jones/ EAM/SNAP) are available. The
SNAP interaction is a much more complicated and computa-
tionally expensive potential that attempts to approach quantum
chemistry accuracy when modeling metals and other materials.
ExaMiniMD and LAMMPS both use neighbor lists for the
force calculation. ExaMiniMD is intended to represent both the
computation (including memory behavior) and communication
that is implemented in LAMMPS.

The problems and input sizes we use for data collection are
shown in Table IV and proxy/parent application versions that
we use in this work are in Table III. We define problems and
input sizes based either on conversations with developers or
from development team performance reports. In all cases, we
attempt to define problems that are pertinent in the exascale
timeframe and we map application problems to their respective
proxies to be as consistent as possible. While we realize that
the characterization and subsequent clustering results may be

TABLE IV: Proxy/Parent Problems/Input Sizes

Proxy / Parent
SWdlite / SW4
Nekbone

Problem/Input size

LOH.1-h50.in, LOH.1-h50, time=9
Dim=3; polynomial order=S8;

spectral multigrid=off

/ max local elements per MPI rank=300

Nek5000 eddy_uv, with Dim=3; polynomial order==8
max local elements per MPI rank=300
SWFFT / n_repetitions=100; ngx=1024
HACC steps=100; ngx=1024
ExaMiniMD units=lj; nx, ny, nz=100; Timestep=0.005;
/ LAMMPS Run=18000 (single- and multinode)

sensitive to input, a study of this sensitivity is beyond the
scope of this paper and will be done in future work.

C. Statistical Analyses

For our statistical analyses, we use the principal component
analysis and clustering algorithms provided by the R Statistical
Computing Tool [27]. We use hierarchical clustering, which is
an unsupervised machine-learning technique, and we use the
elbow method to select the optimal number of clusters to use
as a parameter to the clustering algorithm. The hierarchical
clustering algorithm is agglomerative and used the Ward [7]
cluster criterion.

IV. RESULTS

In this section, we present the results of our analysis that
show the (dis)similarity of the proxy/parent pairs with respect
to computation, memory behavior, and communication on
two distinct architectures and across the two architectures, to
understand if the architecture impacts the measured computa-
tional behavior. A by-product of our clustering methodology
is characterization-related data. We show some of this data to
further discuss the results of the clustering analysis.

We use the R Statistical Computing Tool [27] to im-
plement our unsupervised machine-learning-based clustering
algorithm. Specifically, we use the hierarchical clustering
method in R to compute nearness relationships of the appli-
cation runs, and then use the Elbow method to group them
into K clusters, selecting the best K value. The resulting
clusters contain application runs with similar behavior based
on the input metrics (computation, memory behavior; and
communication). Figures 1 and 5 show the similarity in
computation and memory behavior output by the clustering
model for the Broadwell and Haswell platforms, respectively.
In the dendrograms, the y-axis is the connection height,
which is a measure of similarity—the lower the connection
height, the higher the similarity of the runs below it. On both
architectures, clustering and then applying the elbow method
results in selecting five clusters to be best number of clusters.

Figure 1 shows the clustering on the Broadwell system.
At the lowest level, the five runs of each application always
cluster together, and then in the five clusters all of the proxies
cluster with their parents except Nekbone and Nek5000, which
cluster together at the first join above the five clusters. There
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Fig. 1: Computation and Memory Similarity, Broadwell

is a large similarity (height) step between the level of five
clusters and then further clustering, indicating strong clustering
at the five-cluster level. Above this level the clustering rapidly
(in terms of height nearness of cluster joins) produces two
primary clusters, one containing SWFFT, HACC, Nekbone,
and Nek5000; the other comprising SW4lite, SW4, LAMMPS,
and ExaMiniMD. Recall that we execute five runs for each
proxy/parent application; each of these five runs for each
proxy/parent is shown in Figure 1 and they cluster together,
which indicates small variance between executions. SW4_H1
and SW4_H2 represent the two inputs that we use for this
application (see Table IV). Similarity ranking with respect
to computation of the proxy/parent pairs from most to least
similar on Broadwell is as follows:

1) SW4/SWdlite

2) HACC/SWFFT

3) LAMMPS/ExaMiniMD
4) Nek5000/Nekbone

Clustering was performed over the four most important
principal components produced by PCA. PC1 accounts for
50% of the data set variance, and PC2-4 account for 18, 15,
and 10%, respectively (total 93%). Figure 2 shows a heatmap
that represents the importance of the metrics to the principal
components used in the clustering algorithm. The larger the
circle and the darker, the more that metric contributes to the
overall variability accounted for by the principal component.
PC1 is comprised of many metrics of “medium” importance,
the most important being instructions in the Load and Other
categories, LI to/from L2 bandwidth, DP (double precision)
and Packed DP FLOPS (floating-point operations). For PC2,
the most relevant metrics are store instructions, L3 miss rate,
and Scalar DP FLOPS. Equations to compute the FLOPS
categories are based on formulas from the likwid performance
tool [28]. PC3 and PC4 pick up IPC, store instructions, and
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Fig. 2: Principal Component Heatmap, Broadwell

L2 miss ratio as relevant to the applications, and PC4 adds
some weight to the FP categories that PC2 includes. Overall,
none of the selected metrics are significantly ignored by the
PCA, indicating that they are all important.

Figures 3 and 4 present a small portion of the character-
ization data that is used as input to our clustering model.
We present this data to demonstrate how it can be visually
interpreted to understand the clusters generated by the model
shown in Figure 1. Figure 3 shows the instruction mix of
the proxy/parent pairs, where each instruction category is
represented as a percentage of the total instructions executed.
Through visual inspection of this plot, we see that HACC and
SWFTT are very similar, as are SW4 and SW4lite. These are
the proxy/parent pairs in Figure 1 that have the smallest clus-
tering height and are, therefore, most similar. The instruction
mix of Nek5000, Nekbone, LAMMPS, and ExaMiniMD all
look fairly but less similar. We see from the clustering dendo-
gram that Nek5000/Nekbone and LAMMPS/ExaMiniMD both
have a relatively large height, so are not as similar as the two
other proxy/parent pairs.

Figure 4 shows data on various FLOP categories. We
can visually observe from this the similarity between HACC
and SWFFT, SW4 and SWdlite, Nek5000 and Nekbone,
and LAMMPS and ExaMiniMD. The point here is that for
proxy/parent pairs that are highly similar according to their
cluster dendogram, it is easy to visually observe that similarity
in the underlying hardware metrics. For the pairs that are not
as similar, it is harder to see their similarity in the underlying
metrics—some of them look very similar, while others do
not, and hence the need for a machine-learning mechanism
to statistically extract the similarity from the data.
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Figure 5 shows the clustering similarity in computation of
the four proxy/parent pairs, plus Graph500, on the Haswell
system. Graph500 was used as an outlier application that
should not cluster tightly with any of the other applications,
real or proxy. Five clusters are selected as optimal, with
all of the runs of the proxies and parents each forming
their own cluster together, and Graph500 forming its own
cluster. This is a close-to-ideal result, although the height at
which most proxies and parents cluster together is higher than
those on the Broadwell system, except for SW4lite and SW4.
Above the five-cluster level, everything but SW4 and SW4lite
rapidly conglomerate into a single cluster, and the height
at which this merges with the SW4/SW4lite cluster shows
that SW4/SWdlite is distinct. This is slightly different than
on Broadwell, where ExaMiniMD and LAMMPs clustered
with SW4lite and SW4, and Nekbone and Nek5000 clustered
with SWFFT and HACC. Similarity ranking with respect to
computation of the proxy/parent pairs from most to least
similar on Haswell is as follows:

1) SW4/SWdlite

2) HACC/SWFFT

3) LAMMPS/ExaMiniMD
4) Nek5000/Nekbone

This is the same ordering as on Broadwell, thus showing
perhaps a true ordering in terms of the similarity between the
proxies and parents. The largest change in similarity among
proxy/parent pairs is in HACC and SWFFT; on Broadwell
they are very similar, but on Haswell not as much. Although
Graph500 does not remain separate until the final level of
clustering, it still clusters by itself at the optimal cluster level
(5), and this clustering is only over computation and memory
metrics, so it may not be unreasonable for Graph500 to be
mixed in among the various proxy/parent pairs.

In the principal component analysis for the Haswell clus-
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tering, seven PCs are selected (in order to achieve above 90%
variance explanation). PC1 accounts for 42% of the data set
variance, and PC2-7 account for 18, 13, and on down to
3%, respectively. In the PCA (principal component analysis)
heatmap in Figure 6, we see that for PC1 the important metrics
are F'P and other instructions, LI miss rate and miss ratio, L2
miss rate, and L1 to/from L2 bandwidth. PC2 important metrics
are L2 miss ratio and UPC. PC3 and PC4 have very strong
dependencies, on load/store/branch and L3 cache, respectively,
but it should be remembered that these PCs are starting to get
much weaker in their contribution to data explanation.

As noted above, the proxy/parent clustering on Haswell,
though consistent, is weaker than Broadwell (connected higher
up on the height axis). While not depicted here by charts or
graphs, due to space, when looking at the characterization data
generated on Haswell we do not observe any large differences
in metrics between the proxy/parent pairs. However, we do
see small differences in many metrics, which accumulate to
explain the higher dissimilarity in the clustering. Still, the
proxy/parent clustering is a good result.

We also combined all of the data from both the Broadwell
and Haswell platforms, and clustered all of the runs together,
labeling them with the platform they were run on. This clus-
tering is shown in Figure 7. The elbow method selected eight
as the best number of clusters to consider. Some interesting
observations arise from this clustering. (1) All of SWFFT and
HACC closely cluster together, and also cluster together by
platform before clustering with each other across platforms. (2)
SW4 and SW4lite strongly cluster with each other by platform,
but then the separate platforms do not cluster together until
only two clusters remain. (3) Nek5000 clusters with itself
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across platforms first, but eventually joins Nekbone, which
first clustered with LAMMPS on Broadwell, then Haswell.
(4) The most architecturally neutral application is Nek5000,
followed by ExaMiniMD. HACC. SWFFT, and LAMMPS
have roughly equal performance sensitivity to architecture
(and larger than Nek5000 and ExaMiniMD), while SW4 and
SWlite are the most sensitive to architecture. Finally, with
LAMMPS clustering closer to Nekbone, ExaMiniMD clusters
by itself across platforms, and does not join LAMMPS in
a cluster until everything is in one cluster. While this result
shows some expected groupings, it is different from the per-
platform clustering analysis and shows that it is safer to
perform proxy/parent comparisons per platform rather than
across platform, and that different computations can vary
widely in their behavior differences across different platforms,
at least with respect to the chosen metrics.

Figure 8 shows the clustering that results from the com-
munication (MPI) data, for the Broadwell platform only. Note
first the scale of the height axis, and how far away the final
two clusterings are from the lower clusterings. This indicates
very little similarity at these levels (hierarchical clustering will
always connect everything, eventually). Even the connecting
of the SW4* cluster and the Nek*/LAMMPS/ExaMiniMD
cluster is, relatively, quite high on the axis. In looking at
application and proxy implementations, some do use the same
MPI communication primitives and style, and these cluster
well together. Others, because they were written separately,
may try to implement a similar model of communication, but
they do so with different MPI primitives, and end up having
very different aggregate statistics over the mpiP profile data.
We view this result as indicating that our basic attempt at
abstracting the mpiP data away from specific MPI routines
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was not enough to actually capture an abstract-enough model
of communication where different applications might end up
with similar data. We think an approach that attempts to
characterize communication patterns is needed in this domain.

V. RELATED WORK

Much related work has been published related to proxy
application characterization and comparison of proxies to their
parent applications [1], [2], [3], [29], [30], [31], [32], and
using proxy applications to project system performance of real
applications [4], [33], [34]. We present the most related work
below.

Tramm et al. [35] perform a characterization of a Monte
Carlo particle transport simulation code, OpenMC, and its
proxy, XSBench. Multi-core scaling efficiency, floating point
calculation rates, and hardware performance counter profiles
are correlated to an efficiecy loss metric that is related to
performance as the number of threads are increased. This
work is a study on a single proxy/parent application pair and
presents a methodology that is manual rather than machine-
learning based.

Sreepathi et al. [31] demonstrate the use of Oxbow and
PADS, a toolkit and data store infrastructure for application
behavior analysis, on various Department of Energy (DOE)
co-design centers’ mini-applications, as well as High Perfor-
mance Linpack and High Performance Conjugate Gradient
benchmarks. This form of analysis, similar to what we present
in this work, aims to provide insight into performance and
representativeness of proxy/parent pairs. Although this work
is similar to ours, they focus more on characterization of
performance, particularly for proxies. Further, they present
similarity of proxies, rather than similarity of proxy/parent
pairs.

Kim et al. [3] extend their KGen Fortran Kernel Generator
tool with the ability to gather descriptive statistics from

both the original application and the KGen kernel extracted
from the instrumented application. These statistics are used
to quantify the performance difference between the kernel
and original application, and provide feedback to improve its
representativeness of the real application in a way that does not
increase the workload of the code. Measurements performed
range from the kernel block’s elapsed execution time, to PAPI
hardware counters depending on the type of analysis a user
intends to perform. Their methodology is more manual and
based on a simple comparison (difference) of metrics and they
only focus on applications and kernels that can be extracted
from them using KGen.

Barrett et al. [2], [1] are active in developing proxy appli-
cations and in assessing their characteristics in relation to real
applications. In [1] they do an in-depth analysis of one real
and proxy application pair (Charon/miniFE), while in [2] they
propose a methodology whereby a set of performance domains
is considered for some pair of proxy and real applications,
and comparison and threshold functions are created for each
performance domain, which can be very different from domain
to domain, and the domains can be different from application
to application. For example, for the LAMMPS/miniMD pair
(molecular dynamics), their domains are: total time, force
calculation time, neighbor list construction time, and inter-
process communication time. While the abstract methodology
framework is common, since the instantiation for each pair of
applications is unique, their work is somewhat orthogonal to
ours, as we are proposing a common instantiated methodology.

Islam et al. [32] created the Veritas framework to measure
proxy/parent relationships using belief estimation in Dempster-
Shafer theory over low level resource measurements of CPU
component usage. They then compute the amount that a proxy
covers the real application in each of the resource categories.
The resource categories they used were floating point, branch
execution, TLB, L1-L3 caches, memory, and prefetching. They
also used PCA to achieve some dimensionality reduction in
their data.

Tsuji et al. [4] address the use of proxy applications to
inform the use of benchmark applications as a precursor in
assessing expected system performance without involving real
applications. They propose a new metric, SSSP or Simplified
Sustained System Performance, which uses weighting factors
derived from proxy application performance applied to per-
formance data from simple kernel benchmarks to compute a
metric based on the SSP methodology. This adapted method-
ology avoids the use of real applications in establishing system
performance, which are known to be costly to set up and tune
to a given system. They demonstrate the consistency of SSSP
with SSP while only utilizing data from proxy applications
and simple benchmark kernels. A similar form of performance
projection is likewise presented by Sharkawi et al. [34].

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an unsupervised machine-learning-
based methodology to determine similarity of proxy applica-
tions and their respective parents with respect to computa-



tion, memory, and communication behavior. Our methodology
relies on the collection of hardware-level performance data,
which is converted into metrics, reduced in dimensionality
using principal component analysis, then used as input to a
hierarchical clustering algorithm to determine similarity. We
use this methodology to show that the four proxies, SWFFT,
SWidlite, ExaMiniMD, Nekbone, are indeed representative of
their parent applications (HACC, SW4, LAMMPS, Nek5000,
respectively) across two different architectures, Intel Haswell
and Broadwell. We show this for one important problem/input
size that is mapped consistently across proxy and parent
application. SW4 and SW4lite are consistently the most similar
across both architectures, and all proxies are more represen-
tative of their parents on the Broadwell architecture.

We also looked at the proxy and parent application similarity
across both architectures by analyzing and clustering the
combined data from both the Haswell and Broadwell systems.
Results show that the most architecturally neutral application
is Nek5000, while the performance of SW4 and SW4lite is
the most sensitive to architecture.

We did apply our methodology to mpiP data collected for
each of the proxy/parent pairs. The clustering results revealed
almost no similarity in communication behavior for any of
the proxy/parent pairs. This occurs because for most of the
proxies, the MPI primitives used are different than those used
in the respective parent, resulting in very different aggregate
statistics over the mpiP data.

In future work, we plan to generate communication pattern
heatmap plots from an internal version of mpiP that collects
all of the necessary data. We will develop a similarity metric
to enable quantitative comparison of these communication
patterns. We also plan to migrate the infrastructure to more
platforms, including IBM, additional Intel, AMD, and ARM
systems. Collecting performance data at the function level to
gain a better understanding of overall proxy/parent similarity
will also be done. Finally, we plan to develop a GPU sampler
for the LDMS infrastructure to enable performance compari-
son and similarity analysis for GPU-enabled applications.
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